











A Hidden Pitfall in Agar Media

FIG 3 Total colony counts from three environmental sources (soil, sediment, and river water; three replicates at each site) on three different media (diamond,
PT; square, PS; triangle, PW). The numbers of CFU on PT, PS, and PW media were counted daily for 7 days. CFU counts reported were averages from 1 to 5 plates
on which 30 to 300 colonies were formed. Plates were excluded from colony counts if overgrown by a few colonies spreading across the entire plate. Error bar

shows standard errors of averages calculated from two to five plates.

tivation-independent approach, pyrosequencing produced a total
of 974,399 high-quality reads of 16S rRNA gene sequences from
the three types of environmental samples (number of reads were
as follows: soil sample replicate 1, 114,616 reads; replicate 2,
117,502; and replicate 3, 106,076; sediment replicate 1, 119,340;
replicate 2, 114,714; and replicate 3, 137,867; and river replicate 1,
128,505; replicate 2, 135,779; and replicate 3, no reads as insuffi-
cient DNA was extracted for pyrosequencing). Pyrosequencing
revealed the presence of many more phyla (40 in soil, 56 in sedi-
ment, and 53 in river water) than was evident by cultivation (6 in
soil, 5 in sediment, and 6 in river). Based on the small fraction of
isolates obtained compared to number of sequence reads
(<0.2%), itis not surprising that all of the phyla were not captured
by cultivation. Of the total of 60 different bacterial phyla found by
pyrosequencing, only 17 represented more than 1% of the com-
munity in at least one environmental source (Fig. 4). Isolates were
not obtained from only one phylum, Acidobacteria, which ac-
counted for greater than 5% of the taxa in at least one environ-
mental substrate, suggesting that the media tested do not support
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growth of this phylum. However, isolates from other rarely culti-
vated phyla were obtained, for instance, Armatimonadetes and
Verrucomicrobia that accounted for less than 2.5% of the taxon
proportion of a community (Fig. 4). Unfortunately these rare taxa
could not be propagated in the laboratory after sample storage at
—80°C in glycerol.

Cultivated and noncultivated microbial community com-
parisons.Beta-diversity analysis using principal coordinate anal-
yses of phylogenetic (weighted and unweighted UniFrac) dis-
tances revealed that the communities obtained by pyrosequencing
separated from the cultivated isolates along the first PCoA axis
(Fig. 6). Differences in phylogenetic composition of bacteria at the
phylum level were evident between the noncultivation-based py-
rosequencing results and culture-dependent analyses (Fig. 4).
There were far more Actinobacteria bacteria cultivated from envi-
ronmental samples than indicated by pyrosequencing. The high-
est ratio of Actinobacteria was cultivated from PT medium, and
the lowest was from PW medium. Pyrosequencing indicated that
the phylum Bacteroidetes was the second largest population in the
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FIG 4 Comparison of means of relative proportions of phyla of isolates from
river, sediment, and soil samples using PT, PS, and PW media and 454 pyro-
sequencing of directly extracted DNA. All phyla represented by isolates or
comprising >1% of pyrosequences in at least one environmental source are
included. An additional 40 phyla from pyrosequencing are included as “other”
phyla.

three environments (29, 13, and 27% in the river, sediment, and
soil samples, respectively), and proportional trends were similar
in the isolates obtained on PS (15, 4, and 17% in the river, sedi-
ment, and soil samples, respectively) and PW (20, 2, and 22%)
media but quite different from the proportion of isolates culti-
vated on PT medium (8, 2, and 3% in the river, sediment, and soil
samples, respectively). These results indicate that the cultivable
microbial communities obtained on PS and PW media were more
similar to 454-based community analyses than the bacteria ob-

TABLE 1 Comparison of average alpha diversity values of isolates
obtained on PT, PS, and PW media

Avg value on medium*

Sample source Diversity metric PT PS PW
River Chaol 87.2A 1349 B 132.9B
Observed species 29.7 A 37.5B 37.0B
PD whole tree 2.4 A 29B 29B
Sediment Chaol 70.9 A 1219B 103.6 B
Observed species 29.4 A 359B 33.7C
PD whole tree 23A 29B 2.8B
Soil Chaol 59.6 A 120.1 B 113.6 B
Observed species 27.6 A 356B 36.1B
PD whole tree 2.0A 2.8B 29B

@ All averages of diversity measures were calculated using 10 iterations of data rarefied
to the lowest number of isolates obtained on a single growth medium. Significant
differences (P < 0.05) indicated by letters across rows were calculated using Student’s ¢
tests of all the iterated data for replicates for each sample source-medium combination.
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FIG 5 The ratio of novel microbes isolated on the three different growth
media from each environmental sample. The isolates were defined as novel
microbes if their sequences had less than 97% similarity to known species.
Taxonomic identity of each phylotype was determined using the RDP Classi-
fier at 80% confidence.

tained on PT medium regardless of the environmental sample
type, suggesting that PS and PW media may tend to be less biased
in cultivation than the PT medium (Fig. 4).

DISCUSSION

This study demonstrates that a modification of the approach used
for medium preparation can lead to an increase in CFU counts of
a species that had been recalcitrant to cultivation, e.g., G. auran-
tiaca and a diversity of bacteria isolated from various environmen-
tal sources. By either removing phosphate from the medium (PW)
or autoclaving phosphate and agar separately (PS), we obtained
~50 times more CFU than on PT medium. The hydrogen perox-
ide that was produced when agar was autoclaved together with
phosphate was likely a factor inhibiting growth of some taxa. Re-
active oxygen species are known inhibitors of growth of many
bacteria (45). Unlike other method modifications that have been
used to increase cultivation efficiency (9-12), this modification, in
which medium components are autoclaved separately and then
mixed, is relatively simple to implement in any laboratory.

A number of studies have shown that replacing agar with gellan
gum can increase the number of CFU and/or lead to the isolation
of novel bacteria from environmental samples (13, 28, 46). But the
reason for colony growth differences on agar versus gellan gum
was not investigated in those studies. In this study, only medium
preparation methods differed; the exclusion of phosphate or the
permutation of medium components that were autoclaved to-
gether indicated that inhibitory growth compounds were pro-
duced from autoclaving phosphate with agar. High concentra-
tions of hydrogen peroxide in PT and not PS medium indicated
that it was likely a contributing factor to the growth inhibition of
G. aurantiaca and some taxa in the environmental samples. Al-
though there are reports of growth-inhibitory compounds pro-
duced from autoclaving phosphate with sugars (23) and glucose
with proteins (47), we have not found reports about chemical
interactions with agar associated with autoclaving. More research
is needed to understand the detailed mechanism for generating
peroxide or other radicals from agar and phosphate during auto-
claving.

Cultivation using different environmental sources demon-
strated the bias in results that can occur as a result of the method
used for medium preparation. The genus Flavobacterium in the
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FIG 6 Beta diversity analysis of isolates obtained from river, sediment, and
soil samples using PT, PS, and PW media. (A) Jackknife analysis of Euclidean
distances using Bray-Curtis with data rarefied to 50 isolates. (B) Jackknife
analysis of phylogenetic distances using unweighted UniFrac with data rarefied
to 50 isolates. PC1 and PC2, first and second principal coordinate axes,
respectively.

phylum Bacteroidetes appeared to be most sensitive to the inhibi-
tory compounds present in the PT medium. There were higher
proportions of Bacteroidetes isolates from PS and PW media than
from PT medium for the soil and river water samples. Tamaki et
al. (28) also found more Bacteroidetes strains isolated from fresh-
water sediments using media solidified with gellan gum than with
agar. There have been no studies demonstrating specific sensitiv-
ity of Flavobacterium to hydrogen peroxide, but growth of a fas-
tidious fish pathogen, Flavobacterium psychrophilum, was im-
proved by the addition of charcoal to absorb inhibitors in agar
growth medium (48). Also, the proportions of Betaproteobacteria
isolates from sediment and river samples were higher on PS and
PW media than on PT medium. These findings indicate that the
medium used should be taken into account when the differences
in the composition of cultivated bacterial communities from sim-
ilar environments are interpreted.
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These findings demonstrate the importance of considering
growth inhibitors in agar medium in microbial ecology and envi-
ronmental microbiology. To capture a greater diversity, far larger
numbers, and more novel microorganisms using traditional agar
plate-dependent cultivation techniques, one should take our find-
ings into consideration: (i) phosphate in high concentrations
should be autoclaved separately from agar to maximize the num-
ber of CFU; (ii) low phosphate concentrations, as in the PW me-
dium (M that corresponds to 0.01X or even lower concentra-
tions than in commonly used media), may suffice for the growth
of many environmental bacteria. These new insights must be con-
sidered in medium preparation and can contribute to greater cul-
ture-dependent exploitation of microbial resources from natural
environments.
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