








Similarity-time relationships along the Cd gradient. A signif-
icant time-similarity decay was observed across all the Cd levels
(P � 0.01) (Fig. 3), with the turnover rate ranging from �0.220 to
�0.343. In general, there was an obvious decreasing trend in bac-
terial community turnover under elevated Cd levels, especially at
the higher Cd levels (Cd2 and Cd3). However, well-overlapped
linear regression curves of control and Cd1 treatments indicated
that a slight level of Cd exposure did not influence the temporal
succession of bacterial community.

Linking bacterial community succession to seawater vari-
ables. Constrained analysis of principal coordinates (CAP), a use-
ful method to constrain environmental factors to community
variation based on any distance/dissimilarity metrics (36), was
applied to link the phylogenetic structure of the bacterial commu-
nity with Cd level and seawater variables, listed in Table S1 in the
supplemental material. Eight parameters showing significant cor-

relation (P � 0.05) were selected to make the biplot, with the
correlation coefficient (represented by the relative length of the
arrow) changed in the following order: Chl-a 	 DO 	 PO4

3�-P 	
pH 	 NO3

�-N 	 DOC 	 NO2
�-N 	 Cd (Fig. 4). The combina-

tion of these parameters constrained 44.3% of the community
variance.

Representative phylotypes associated with Cd pollution
level. Twenty-five representative phylotypes (OTUs) correlated
with Cd level were separated into positive and negative groups
according to the correlation coefficients across the whole duration
(see Table S3 in the supplemental material). The closely matched
type strains provide additional information on taxonomic identi-
fication of some OTUs (see Table S4 in the supplemental mate-
rial). Nine key phylotypes in the positive group, affiliated to the
families Flavobacteriaceae (members of genera Tenacibaculum,
Winogradskyella, Sediminicola, and Algibacter and an unclassified
one), Rhodobacteraceae (a member of genus Pseudoruegeria),
Erythrobacteraceae (a member of the genus Erythrobacter), Pis-
cirickettsiaceae, and Alteromonadaceae (a member of the genus
Glaciecola), showed high frequency (3 to 4 times) of positive cor-
relation with the Cd level across the whole duration (Fig. 5a).
Generally, the abundances of these phylotypes were greater at
higher Cd levels (Cd2, Cd3). Most phylotypes in the negative
group were from the families Flavobacteriaceae, Saprospiraceae,
and Rhodobacteraceae. However, only one phylotype from the ge-
nus Anaerospora (OTU3392), affiliated to Rhodobacteraceae,
showed a negative correlation with the Cd level at three time
points (Fig. 5b).

DISCUSSION
Temporal variability overwhelms Cd-induced patterns in the
bacterial community. In this study, high temporal variation in
BCC was observed regardless of Cd level (see Fig. S1 in the sup-
plemental material), and incubation time exhibited a more-exten-
sive influence on dominant taxa than did the Cd level (Table 1).
Accordingly, a similar trend in the beta diversity of the bacterial
community was observed (Fig. 1a). Cd-induced patterns were ob-
scured by temporal variability among time points and could be
detected only within individual days. This is confirmed by the

FIG 2 Relationships between the first axis of NMDS (as a proxy for the bac-
terial community dissimilarity) with Cd level for different sampling days. The
regression slopes of the linear relationships are shown. Refer to Fig. 1 for
treatment notation. d, days.

FIG 3 Similarity-time decay models of bacterial communities. The power-law
exponent w was estimated directly with a linear regression (log-log space ap-
proach) fit between the average Sørensen similarity values and days between
observations. Refer to Fig. 1 for treatment notation.

FIG 4 Constrained analysis of principal coordinates (CAP) of detected OTUs
and the selected seawater parameters. The percentage of variation explained by
each axis is shown. Refer to Fig. 1 for treatment notation.
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variation partitioning analysis indicating that temporal variability
contributed more to bacterial community variance than Cd did
(Table 3). Although the bacterial community structure shifted
along the Cd gradient consistently from day 4, a slight Cd distur-
bance (10 �g liter�1) did not shift the community structure, sug-
gesting that the response of the bacterioplankton community to
Cd is dose dependent. This is in line with results from a previous
study focusing on the response of bacterial community to penta-
chlorophenol (PCP) in tree hole microcosms (37).

Incubation time showed more-significant influences (P �
0.01) on observed richness, Chao1 richness index, and phyloge-
netic diversity than Cd level did (P � 0.05; see Table S2 in the
supplemental material). Cadmium pollution did not cause a de-
crease in the overall alpha diversity; on the contrary, we found an
increase in all the metrics of bacterial communities in Cd2 and
Cd3 microcosms at day 4. Actually, high diversity and evenness
seemed to be common features in marine microbial communities
of many chemically polluted environments (9), probably because
pollution disturbance generated conditions for the proliferation
of rare taxa with stress resistance. According to the widely re-
ported metal resistance of bacteria (38–40), the acute response of
the bacterial community to the higher Cd levels at the early stage
might be due to the proliferation rate of resistant taxa being higher
than the extinction rate of sensitive taxa. However, this trend dis-
appeared later, indicating that the temporal succession over-
whelms Cd-induced patterns in the alpha diversity of bacterial
community.

Specific Cd-induced patterns of bacterial community in sys-
tems with high temporal variability. Since marine bacterioplank-
ton communities generally show high temporal and spatial vari-
ability (19, 41, 42) and less is known about the temporal dynamics
of BCC under heavy metal pollution, we used here the manipu-
lated microcosm experiment as a pilot study to explore the tem-
poral trend of coastal BCC responding to Cd pollution level. Tem-
poral succession of bacterial communities fit well with the
similarity-time decay model (Fig. 3), which is consistent with our

hypothesis. Here, the bacterial community turnover was much
higher than those in marine environments in situ with gradual
variability (15). This can be explained partly by the robust dynam-
ics of environmental variables in a small water body (see Table S1
in the supplemental material) and further by the short duration of
this study (15). Particularly, we found that elevated Cd levels de-
creased the temporal turnover rate (significant in Cd2 and Cd3
microcosms), meaning that Cd addition made the succession of
bacterial community come about slowly. Relatively low temporal
dynamics of microbial communities were observed in environ-
ments with high selective pressure such as wastewater treatment
systems (43). Here, it seems that Cd showed a certain selective
pressure to the temporal variability of BCC. Since the temporal
turnover rate of microbial community was likely not correlated
with taxon richness (15) and the Cd dose (at 0.01 mM) seemed not
to decrease the abundance of bacterioplankton as previously re-
ported (44), the Cd-induced trend in temporal turnover of BCC
could result from the relatively high and stable evenness (pre-
sented by the greater mean value and lesser coefficient of variation
[CV])of Pielou’s J index over time at higher Cd levels [Cd2 and
Cd3; data not shown]), leading to a more-stable bacterial commu-
nity structure (15). Moreover, the Cd-induced inhibition of pro-
tozoan growth (45) leading to the decrease in predation pressure
to bacterioplankton might contribute to this pattern. These points
should be addressed in depth to reveal the mechanisms behind
this pattern in future work.

A comprehensive study concluded that determining the tem-
poral variability of microbial communities could provide a base-
line for community changes to separate these processes from de-
terministic responses (15). Although a high temporal variability in
the bacterial community compared with those previously re-
ported in coastal ecosystems in situ (15) was observed, we can find
similar Cd-induced patterns of communities at each time point
from day 4 (Fig. 2), meaning that temporal variability did not
mask the selective pressure of Cd on BCC. Particularly, the Cd-
induced pattern of community structure showed some extent of

FIG 5 Heat maps of average relative abundances of key taxa positively (a) and negatively (b) associated with Cd level across the whole duration. At each time
point, significance (Sig.) is noted as follows: **, significant Pearson’s correlation (P � 0.01); *, significant Pearson’s correlation (P � 0.05); ns, not significant (n �
16). Taxonomy of the OTUs was identified in the Greengenes database. Refer to Fig. 1 for treatment notation.
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predictability. The resilience of microbial communities to distur-
bances has been frequently reported (46, 47) and can be defined by
the fact that the community presents a certain degree of recovery
when the disturbance disappears or the disturbance intensity
tends to decrease. For example, Ager et al. found that both the
alpha diversity and the beta diversity of a bacterial community
recovered due to the great dissipation rate of PCP after 4 days (37).
Metals cannot be degraded and are supposed to influence the bac-
terial community more persistently. In this study, the alpha diver-
sity tended to be uniform across Cd levels in the later stage of
incubation (7 to 14 days; see Table S2 in the supplemental mate-
rial). Also, phylogenetic beta diversity of bacterial communities
among different Cd levels tended to converge during days 4 to 14
(Fig. 1b). Moreover, the slope of the NMDS axis 1-Cd linear
model became less negative over time (Fig. 2). These results re-
flected the fact that the differences in community diversity along
the Cd gradient became smaller in the later stage of the experiment
than they were in the early stage, thus indicating some adaption of
the bacterial community to Cd exposure. Another possible expla-
nation could be the decrease in the concentrations of soluble Cd in
the later duration due to the sorption of Cd to small particles (48).

Environmental variables involved in the interaction of tem-
poral variability and Cd-induced patterns in bacterial commu-
nity. Robust temporal dynamics in seawater variables indicated
that the system is highly unstable. Similar results have been doc-
umented in some ex situ microcosm/mesocosm studies (16, 23),
possibly due to the higher metabolic rate in the smaller water body
(23), in which the available nutrients could almost be transformed
from local fractions rather than from the source at catchment.
Moreover, the lack of sediment might also alter the chemical equi-
librium and buffering capacity of the system (49, 50). We moni-
tored the dynamic changes of the chemical variables to find key
factors correlated with temporal variation of BCC. A number of
studies have demonstrated that BCC can reflect biotic and abiotic
processes over time (17, 19, 21, 47). In this study, Chl-a and DO
showed the strongest correlations with community variation and
shared a similar shaping direction (Fig. 4). Overall, a gradual van-
ishing of phytoplankton biomass over time was observed, while
there was a slight decrease in DO in the later stage of incubation
(see Table S1 in the supplemental material). The importance of
phytoplankton and DO in shaping the marine bacterioplankton
community has been confirmed before (51–53), as were other
driving factors here (7, 16, 24). Phosphate and Cd share a similar
direction in shaping the bacterial community (Fig. 4). The pattern
might be due to the enhanced microbial transformation rate of
PO4

3� resulting from the higher requirement of bioavailable
polyphosphates by bacterioplankton cells for Cd detoxification
(54), as indicated by generally higher concentrations of PO4

3�-P
at higher Cd levels. Remarkably, Cd showed weaker correlation
with community variation than any of the other driving variables
did. Moreover, all these variables changed temporally (see Table
S1 in the supplemental material), thus partly explaining why tem-
poral variability overwhelms Cd-induced patterns in the BCC
variation.

A combination of the key factors can only explain 44.3% of
community variation, and thus some unmeasured factors could
contribute to the unexplained variation. For example, the preda-
tion pressure of flagellates in shaping BCC through the size selec-
tion in bacterial communities has been frequently reported (23,
55). In addition, bacterial adherence to the bottle’s inner surface

could be considered a formation process of biofilm on an artificial
surface, where a unique bacterial community composition was
often observed compared with that in the surrounding water col-
umn (56, 57). But the influence of this process on the BCC in the
water column was rarely revealed, which might also be a shaping
force in bacterioplankton. The Cd-induced pattern referred to
here was the community variation caused by the Cd addition,
which could be directly induced by Cd stress (toxicity) and also
could be due to its influence on the growth of phytoplankton (58)
and protozoa (45). Furthermore, the interaction of Cd level and
incubation time in seawater variables (see Table S1 in the supple-
mental material) could explain their interaction in the variation of
BCC (Table 3). In conclusion, the variation of BCC could be an
integrated reflection of the complicated interactions among time,
Cd, and environmental factors (including both biotic and abiotic
ones).

The purpose of this pilot study is to provide insight into the
existence of specific Cd-induced patterns in BCC temporal varia-
tion in coastal water. However, the results from small-scale studies
like microcosm experiments usually cannot be directly extrapo-
lated to an in situ ecosystem because of inadequate or absent con-
sideration of whole communities, sediment/air-water interac-
tions, physical phenomena like wind and water renewal, and
temporal events like seasonality (59). The 4-liter manipulated sys-
tem here did not include sediment, which could influence the
Cd-induced pattern of BCC variation through bacterial dispersal
(60), release of nutrient (61), and interactions of Cd and sediment
particles (62) during sediment-water exchange. Moreover, the
weaker physical mixing, limited source of nutrient, and lack of
activities of wide-ranging higher organisms in the bottles could
also contribute to a reduced complexity compared to that of a
coastal ecosystem (59). Therefore, the differentiation in the vari-
ation of BCC in coastal ecosystems compared with the micro-
cosms here could be not only the lower temporal turnover but also
the shaping forces in temporal patterns of bacterioplankton (19,
41, 42) and their interactions with Cd, suggesting the nondeter-
minacy and complexity in the Cd-induced pattern of BCC varia-
tion on an ecosystem scale. However, using 16S pyrosequencing
technique, recent studies reported repeatable and predictable pat-
terns in BCC across different temporal scales (15, 19, 21), as ob-
served in this study. Therefore, the temporal dynamics of BCC
responses to Cd exposure in coastal water in situ might show a
trend similar to the one that we observed here. Future investiga-
tions on larger scales with more-complete components of whole
ecosystems like mesocosm studies in situ or even ecosystem-scale
experiments across longer temporal scales are needed to validate
this observed pattern.

Key taxa associated with Cd pollution level on a temporal
scale. Recent studies have focused on screening key taxa associ-
ated to pollutants (63) and the health status of humans/animals
(21, 64). A comprehensive study suggested that if a certain taxon
could be consistently and repeatedly detected at great abundance
in a location, there would be a high possibility that this taxon is
environment specific rather than a transient passer-by (19). We
extend this conception to propose that if a taxon shows frequent
and stable correlation with Cd level, it is possible that this taxon
plays an important ecological role in response to Cd exposure.
Metal resistance of bacteria affiliated to various species has been
widely reported in soils (65), sediments (66), and aquatic environ-
ments (39). Five of nine key taxa positively associated with Cd
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level were from Flavobacteriaceae, including a member of the ge-
nus Tenacibaculum (Fig. 5). A recent study reported the mercury
resistance of a member of Tenacibaculum from marine Flavobac-
teriaceae (67). Moreover, flavobacteria made up 70% of a Cd-
resistant bacterial community in soil amended with sewage sludge
(68) and have not been extensively studied but could be major
components of the bacterial community in metal-polluted marine
environments (67). We also found a key taxon (OTU4028) from
the genus Erythrobacter (Fig. 5; see also Table S4 in the supplemen-
tal material), and some members of this genus have genes encod-
ing metal efflux proteins associated with metal resistance (69).
However, the members of Rhodobacteraceae, Piscirickettsiaceae,
and Alteromonadaceae were not associated with metal resistance
in previous reports. In conclusion, these nine taxa significantly
contributed to the Cd-induced pattern in the BCC variation over
time, and high temporal variability of BCC did not suppress the
characteristics of their responses to Cd exposure. On the other
hand, most taxa in the negative group showed a one-time negative
correlation with Cd level, except for a member of the genus An-
aerospora (OTU3392), which showed a high frequency of correla-
tion with the Cd level. The underlying functional roles that these
taxa play in Cd-polluted coastal water should be considered in
further works.
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