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FIG 4 Main redox pathways of interest in S. cerevisiae during anaerobic
growth on glucose. Glycolysis allows for the redox-neutral conversion of glu-
cose to ethanol and CO,. Redirecting glucose-6-phosphate (glucose-6-P) into
the oxidative pentose phosphate pathway generates net NADPH and addi-
tional CO, at the expense of ethanol, whereas converting glucose to glycerol
consumes NADH. Converting acetate to ethanol in strains expressing heterol-
ogous NADH-specific ADA consumes NADH. Abbreviations: ACS, acetyl-
CoA synthetase; ADA, acetaldehyde dehydrogenase (acetylating); ADH, alco-
hol dehydrogenase; ALDH, nonacetylating acetaldehyde dehydrogenase;
GPD, glycerol-3-phosphate dehydrogenase; G6PDH, glucose-6-phosphate
dehydrogenase; DHAP, dihydroxyacetone phosphate; G3P, glycerol-3-phos-
phate; GAP, glyceraldehyde 3-phosphate.

the redox stoichiometry of displacing glycerol formation with the
conversion of acetate to ethanol (for calculations, see File S1 in the
supplemental material), a 2.5-g liter ' lower glycerol titer should
result in an NADH surplus of 27 mM, allowing for consumption
of 0.8 gliter " acetate and production of an additional 1.8 g liter "
ethanol (the extra ethanol comes both from acetate and from glu-
cose that is no longer converted to glycerol). The reasonably close
agreement between the theoretical and experimental numbers
matched our previous findings in Gpd™ ADA strains (W. R. Sill-
ers, H. van Dijken, S. Licht, A. J. Shaw, A. B. Gilbert, A. Argyros,
A. C. Froehlich, J. E. McBride, H. Xu, D. A. Hogsett, and V. B.
Rajgarhia, November 2011, world patent WO2011140386) and
supported our assumption that B. adolescentis adhEp is predomi-
nantly NADH specific, while suggesting that NADH availability in
strain M6571 is likely a limiting factor in the conversion of acetate
to ethanol.

Expression of Entamoeba histolytica ADHI. The main meta-
bolic pathways for glucose fermentation in S. cerevisiae are shown
in Fig. 4. By deletion of the GPD genes and expression of ADA in
strain M6571, the surplus NADH generated in the production of
biomass was successfully redirected from glycerol production to
conversion of acetate to ethanol via ACS/ADA/ADH. However,
wild-type S. cerevisiae strains have limited flexibility to generate
additional NADH during anoxic conditions without incurring a
great loss in ethanol yield and initiating undesirable by-product
formation. For example, excretion of one pyruvate generates one
NADH but costs one ethanol. Production of acetate from acetal-
dehyde via NADH-specific aldehyde dehydrogenase generates
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two NADH per ethanol sacrificed, but this directly counters the
desired conversion of extracellular acetate into ethanol.

Interestingly, anaerobic NADPH production in S. cerevisiae is
more flexible and can be more carbon efficient. The oxidative
pentose phosphate pathway (oxPPP) plays a crucial role in wild-
type S. cerevisiae strains in satisfying the biosynthetic NADPH
requirement (21, 32, 33) and can easily adapt to increased
NADPH demand (22). Whereas ethanolic fermentation via gly-
colysis produces equimolar amounts of ethanol and CO,, the ox-
PPP shifts this ratio toward CO, production. The large difference
in the degree of reduction between ethanol and CO, results in a
high electron yield of 6 NADPH per ethanol sacrificed (for calcu-
lations, see File S1 in the supplemental material).

The cytosolic ADH activity is predominantly NADH specific
during ethanolic fermentation in wild-type S. cerevisiae (19). We
hypothesized that introducing a cytosolic NADPH-specific alco-
hol dehydrogenase (NADPH-ADH) would increase the cell’s met-
abolic flexibility and allow for redox balancing between the
NADPH produced in the oxPPP and the NADH consumed in the
conversion of acetate to ethanol (Fig. 5). Stoichiometric calcula-
tions show that such an approach allows the conversion of up to
0.29 g acetate per g glucose. At this theoretical maximum, all ATP
generated in the fermentation of glucose would be dedicated to
converting acetate to ethanol, leaving no room for cellular growth
and maintenance, while two-thirds of all ADH activity would be
NADPH dependent (see File S1 in the supplemental material).

To test this hypothesis, we expressed ADHI from the proto-
zoan parasite Entamoeba histolytica (Eh-ADH1), encoding an
NADPH-specific alcohol dehydrogenase with high activity and
affinity toward acetaldehyde (31), in strain M6571 to produce
strain M6951. The expression was confirmed with an in vitro en-
zyme assay, which showed a 10-fold increase in NADPH-ADH
activity in M6951 compared to that in M6571 (Table 2). Expres-
sion of Eh-ADHI increased acetate consumption by 1.2 g liter "
(final titer of 5.9 * 0.0 g liter ') and ethanol production by 0.7 g
liter ™" (final titer of 54.8 + 0.1 g liter ') in the YPD bottle fer-
mentations (Fig. 3). These titer changes were in agreement with an
oxPPP redox-balanced yield of 0.51 g ethanol per g acetate (for
calculations, see File S1 in the supplemental material).

Overexpression of ACS2 and ZWFI1. The Gpd ™~ Ba-adhE Eh-
ADH] strain M6951 consumed 0.021 g acetate per g glucose (Fig.
3). Since this was still significantly below the theoretical maximum
0f 0.29 g g, we explored additional genetic modifications.

We first focused on ZWFI, encoding glucose-6-phosphate de-
hydrogenase (G6PDH) (34), which catalyzes the first reaction of
the oxidative pentose phosphate pathway (Fig. 4). ZWFI has been
linked to furfural and H,O, tolerance (10, 35, 36), presumably by
providing NADPH for detoxification reactions, and has been
overexpressed to generate NADPH for xylitol production (37, 38).

Overexpression of ZWFI in strain M6951 resulted in strain
M7888. Compared to that by M6951, acetate consumption by
M7888 (Gpd~ Ba-adhE Eh-ADHI1 ZWFI) increased by 1.4 g li-
ter ' (final titer of 4.4 = 0.0 g liter ") (Fig. 3), while the ethanol
titer increased by 0.7 g liter ' (final titer of 55.4 = 0.1 g liter ').
The final glycerol titer increased slightly from 0.1 = 0.0 to 0.3 =
0.0 g liter". A similar increase in glycerol production was ob-
served by Guadalupe Medina et al. after evolution of a Gpd~ ADA
strain, which was speculated to be due to increased glycerolipid
degradation (23, 39).

We also targeted acetyl-CoA synthetase (ACS), which converts
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FIG 5 Redox pathways in a Gpd ™ S. cerevisiae strain expressing NADH-specific acetaldehyde dehydrogenase (acetylating) (ADA) in the absence (top) or
presence (bottom) of cytosolic NADPH-specific alcohol dehydrogenase (ADH). The combined presence of NADH- and NADPH-specific ADH allows the redox
cofactors of the oxidative pentose phosphate pathway and the acetate-to-ethanol pathway to be matched, with ethanolic fermentation via glycolysis playing a

crucial role in exchanging NADPH for NADH.

acetate to acetyl-CoA in the first reaction of the acetate-to-ethanol
pathway. ACS has been a target in multiple metabolic engineering
strategies with S. cerevisiae for overproduction of acetyl-CoA-de-
rived products (40—42), as well as for overproduction of NADPH
for aerobic xylitol production (43). We chose to overexpress
ACS2, which unlike ACSI is not subject to glucose catabolite in-
activation (44).

Overexpression of ACS2 in strain M6951 resulted in strain
M7890. Compared to that by M6951, acetate consumption by
M7890 (Gpd~ Ba-adhE Eh-ADHI1 ACS2) increased by 0.6 gliter ™'
(final titer of 5.3 = 0.0 g liter '), while the ethanol titer increased
by 0.3 gliter ' (final titer of 55.1 = 0.1 g liter ") (Fig. 3).

Combining the overexpression of ACS2 and ZWF1I in strain
M6951 had a synergistic effect in the resulting strain M8031
(Gpd™ Ba-adhE Eh-ADHI ACS2 ZWFI). Acetate consumption

increased by 2.4 g liter ™" (final titer of 3.5 = 0.0 g liter '), and
ethanol production increased by 1.0 g liter "' (final titer of 55.7 =
0.1 g liter ") (Fig. 3). Similar to M7888, M8031 showed a slightly
increased glycerol titer of 0.3 =+ 0.0 g liter ~'. If we assume that the
oxPPP provides the electrons needed to convert acetate to ethanol,
the extra 3.6 g liter ' acetate consumed by M8031 compared to
M6571 can be expected to allow the production of 1.8 g liter '
ethanol, closely matching the experimental results. Compared to
the wild-type M2390 reference strain, M8031 showed an 8%
higher ethanol yield on glucose (0.48 + 0.0 g g~ ' versus 0.44 = 0.0
g g '), while acetate consumption increased from 0.005 * 0.000
t0 0.041 = 0.000 g acetate per g glucose.

In vitro enzyme assays showed that overexpression of ACS2
in strains M7890 and M8031 increased ACS activity by approx-
imately 4-fold, whereas overexpression of ZWFI in strains

TABLE 2 In vitro enzyme activities of NADPH-specific alcohol dehydrogenase, acetyl-CoA synthetase, and glucose-6-phosphate dehydrogenase

Enzyme activity (uwmol min~' mg protein™~)”

Strain Description” NADPH-ADH ACS G6PDH

M2390 Wild type 0.002 = 0.000 0.03 = 0.00 0.18 = 0.08
M6571 Gpd™ Ba-adhE 0.003 = 0.000 0.04 £ 0.00 0.17 £ 0.02
M6951 Gpd~ Ba-adhE Eh-ADH]1 0.031 = 0.003 0.04 * 0.00 0.17 £ 0.03
M7888 Gpd™ Ba-adhE Eh-ADHI pADHI-ZWFI ND¢ 0.03 = 0.00 5.46 = 0.14
M7890 Gpd™ Ba-adhE Eh-ADHI ACS2 ND 0.17 £ 0.05 0.23 £0.04
M8031 Gpd™ Ba-adhE Eh-ADHI1 ACS2 pADHI1-ZWF1 ND 0.11 £ 0.03 4.49 £ 0.52
M9843 Gpd™ Ba-adhE Eh-ADHI ACS2 pHXT2-ZWF1 0.033 £ 0.002 0.13 = 0.02 0.71 = 0.05

“Gpd~, GPDI1/GPD2 deletion; Ba-adhE, B. adolescentis adhE acetaldehyde dehydrogenase (acetylating), Eh-ADH1, E. histolytica ADH]I.
b Values represent the average + SD for duplicate cultures. NADPH-ADH, NADPH-specific alcohol dehydrogenase; ACS, acetyl-CoA synthetase; GGPDH, glucose-6-phosphate

dehydrogenase.
“ND, not determined.
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FIG 6 Metabolite profiles of S. cerevisiae strains cultivated in flushed (95% N,

-5% CO,) vented serum bottles with defined medium (114 g liter ™' glucose, 8.3

gliter ' acetate, pH 5.5), sampled after 120 h. The medium contained 0.7 gliter ' ethanol due to ergosterol addition. Bottles were run in triplicate, and error bars
show standard deviations. Genotypes: wt, wild type; Gpd ™, gpd1A gpd2A deletion; Ba-adhE, B. adolescentis adhE expression; Eh-ADH]1, E. histolytica ADHI
expression; ZWF1, ZWFI overexpression with either the ADHI or HXT2 promoter; ACS2, ACS2 overexpression.

M7888 and M8031 increased G6PDH activity by ca. 26-fold
(Table 2).

Role of Eh-ADHI] in strains overexpressing ACS2 and ZWF]I.
To confirm that Eh-ADHI played its envisaged role as redox bal-
ancer, we deleted the gene in strains M7888, M7890, and M8031,
resulting in strains M9188, M9190, and M9192, respectively. All
three strains performed similarly to strain M6571 (Fig. 3) with
limited acetate consumption. This supports our assumption that
conversion of acetate to ethanol in M6571 is indeed primarily
NADH limited, since ACS2 overexpression loses its effectiveness
in strains lacking Eh-ADHI (M9190 and M9192). It also provides
additional evidence that NADPH-specific Eh-ADHI can success-
fully compete with endogenous cytosolic NADH-specific ADH
and allows NADPH generated in the oxPPP to be exchanged for
NADH for use by the NADH-specific ADA, since ZWFI overex-
pression no longer benefits acetate consumption in strains lacking
Eh-ADHI (M9188 and M9192).

Fine-tuning ZWF1 expression for anaerobic performance.
Whereas strains M7888 and M8031 performed well in unflushed
bottles with YPD medium (Fig. 3), we found that both ZWFI-
overexpressing strains grew poorly in bottles flushed with 95%
N,-5% CO,, especially in defined medium, resulting in high re-
sidual glucose and poor ethanol yields (Fig. 6). Whereas all bottles
with M7888 seemed to have stalled at ca. 80 g liter ' glucose after
120 h, residual glucose for M8031 ranged from 2 to 61 g liter "'
among the replicates. With a gas-to-liquid ratio of 5:1, unflushed
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bottles had an effective oxygen dose of ca. 43 mM. This might
allow for the respiration of ca. 1 g liter ' glucose and might pro-
vide the ZWFI-overexpressing yeast strains the time and energy to
adapt to the anaerobic redox constraints. Alternatively, the oxy-
gen might simply allow for sufficient initial growth to allow the
fermentation to finish, even if growth slows once anoxic condi-
tions have been achieved.

In view of the very high G6PDH enzyme activity levels mea-
sured for the ZWFI-overexpressing strains M7888 and M8031, we
hypothesized that these strains might suffer from too much
G6PDH activity under anoxic conditions. Since robust anaerobic
performance is crucial for industrial application, we tried overex-
pressing ZWFI in M7890 with a different promoter (pHXT?2 in-
stead of pADHI), resulting in strain M9843 (Gpd ™~ Ba-adhE Eh-
ADHI ACS2 pHXT2-ZWF1I). This moderated the ZWF]I activity
to 0.71 = 0.05 pmol min~' (mg protein) "', ca. 4-fold over the
wild-type level (Table 2), and greatly improved growth in flushed
bottles (Fig. 6).

The engineered strains that were able to finish in flushed bot-
tles with defined medium generally showed better acetate uptake
than those in unflushed YPD bottles (Fig. 6). Compared to that in
M2390, glycerol production was again greatly reduced in the
Gpd™~ Ba-adhE M6571 strain, with final titers of 4.0 = 0.1 and
0.1 = 0.0 gliter ', respectively. Acetate uptake increased from 0.2
to 1.9 gliter " (with final titers of 8.1 = 0.0 gliter ' for M2390 and
6.3 + 0.0 g liter ' for M6571), and ethanol production increased
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by 4% (final titers of 51.1 = 0.3 and 53.3 = 0.1 g liter'). Addi-
tional overexpression of Eh-ADH1, ACS2, and ZWFI (the latter
under the control of pHXT2) in strain M9843 raised acetate con-
sumption by a further 3.4 gliter ™" (final titer of 3.0 = 0.1 gliter ")
while increasing ethanol production by 1.2 g liter ™" (final titer of
54.6 = 1.0 g liter '), somewhat less than the 1.7 g liter ' extra
ethanol expected based on the difference in acetate uptake, which
can partially be explained by a slight increase in glycerol produc-
tion to 0.2 g liter ~'. M9843 consumed 0.046 = 0.001 g acetate per
g glucose and showed a 7% higher ethanol yield on glucose than
the wild-type reference strain M2390 (0.47 + 0.01 g g~ ' versus
0.44 +0.00gg™").

DISCUSSION

NADPH-ADH as a target for redox engineering. To our knowl-
edge, this study is the first to report the use of NADPH-specific
alcohol dehydrogenase in S. cerevisiae for the net production of
NADH during anaerobic ethanolic fermentation. Unlike previous
efforts to increase acetate consumption during ethanol fermenta-
tion by supplying additional NADH (24, 28; de Bont et al., world
patent WO2013081456), the use of NADPH-ADH does not re-
quire specific sugar substrates such as xylose or cosubstrates such
as glycerol. Our approach creates a tunable redox imbalance in
ethanolic fermentation, where NADH generated in glycolysis is
partially preserved and the increased demand for NADPH is ful-
filled by the oxidative pentose phosphate pathway. Celton et al.
used a stoichiometric model to estimate that the native pentose
phosphate pathway can generate as much as 140 mmol NADPH
per g CDW (22), significantly more than the anaerobic NADH
surplus of 5 to 11 mmol per g CDW (18,21, 22). As such, NADPH-
ADH might be of use to other metabolic engineering projects in
yeast that involve electron-consuming side reactions of ethanolic
fermentation for which only NADH-consuming enzymes are
available. The applicability of NADPH-ADH in metabolic engi-
neering strategies was recently underlined by an in silico analysis of
cofactor swaps in a genome-scale metabolic model of S. cerevisiae,
where ADH was identified as a powerful target for overproducing
native metabolites (45).

Industrial acetate consumption strains. The acetate con-
sumption strains described in this study have glycerol-3-phos-
phate dehydrogenase genes GPDI1 and GPD?2 deleted. While a
convenient genetic modification to avoid competition for the an-
aerobic biosynthetic NADH surplus, Gpd ™ strains are known to
be sensitive to osmotic stress and to be less robust (23, 46). How-
ever, a reduction in glycerol formation is still very much desired
since it increases the ethanol yield. Therefore, to create industrially
applicable acetate consumption strains via the metabolic engi-
neering strategy presented, a future objective is to (partially) re-
enable glycerol formation while maintaining a careful balance be-
tween glycerol formation and acetate consumption, either
through single deletions of the GPD genes or downregulation of
their expression (47, 48).

In this light, it is interesting that while the ACS/ADA/ADH
pathway was first demonstrated in a gpdIA gpd2A background
(18), it has since been implemented in GPDI GPD?2 strains (24,
28), with Wei et al. reporting that glycerol production was kept in
check by selecting a better ADA enzyme. In contrast, de Bont et al.
(world patent WO2013081456) have explored partial GPD inac-
tivation.

With a consumption of 0.046 g acetate per g glucose, strain
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M9843 reached 16% of the maximal theoretical uptake stoichiom-
etry. This suggests that there are still many opportunities to de-
bottleneck the pathway by optimizing enzymes and their expres-
sion levels. However, since the pathway to convert acetate to
ethanol requires an ATP investment, there is a trade-off between
acetate consumption and cellular growth. As such, the optimal
level of acetate consumption will likely have to be determined case
by case, depending on the exact metabolic pathways used, the
availability of sugars, acetate, and other cosubstrates in the me-
dium, inhibitor concentrations, the fermentation pH, and the rate
at which biomass needs to be produced during the fermentation.

In conclusion, the introduction of E. histolytica NADPH-
ADH, combined with overexpression of ACS2 and ZWFI, im-
proved acetate uptake in flushed bottles almost 3-fold compared
to that of our Gpd ™ Ba-adhE strain: from 0.017 = 0.000 g acetate
(g glucose) " with M6571 to 0.046 = 0.001 g acetate (g glucose) ™"
with M9843. Our final M9843 strain consumed 5.3 g liter ' ace-
tate during anaerobic fermentation of 114 g liter ' glucose, pro-
ducing 3.4 gliter ' more ethanol than the wild-type M2390 strain,
a 7% increase. Apart from increasing yields, converting acetate to
ethanol can further improve the economics of second-generation
biofuel production by reducing the substrate toxicity, improving
the strain tolerance, and reducing the need for pH control. This
metabolic pathway is therefore of high interest to the biofuel in-
dustry.
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