Adaptation Genomics of a Small-Colony Variant in a *Pseudomonas chlororaphis* 30-84 Biofilm

Dongping Wang,a Robert J. Dorosky,a Cliff S. Han,a Chien-chi Lo,a Armand E. K. Dichosa,a Patrick S. Chain,a Jun Myoung Yu,b Leland S. Pierson III,b,c Elizabeth A. Piersonb,c

Biowissenschaften Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USAa; Departments of Plant Pathology and Microbiologyb and Horticultural Sciencesc, Texas A&M University, College Station, Texas, USA

The rhizosphere-colonizing bacterium *Pseudomonas chlororaphis* 30-84 is an effective biological control agent against take-all disease of wheat. In this study, we characterize a small-colony variant (SCV) isolated from a *P. chlororaphis* 30-84 biofilm. The SCV exhibited pleiotropic phenotypes, including small cell size, slow growth and motility, low levels of phenazine production, and increased biofilm formation and resistance to antimicrobials. To better understand the genetic alterations underlying these phenotypes, RNA and whole-genome sequencing analyses were conducted comparing an SCV to the wild-type strain. Of the genome’s 5,971 genes, transcriptomic profiling indicated that 1,098 (18.4%) have undergone substantial reprogramming of gene expression in the SCV. Whole-genome sequence analysis revealed multiple alterations in the SCV, including mutations in *yfiR* (cyclic-di-GMP production), *fusA* (elongation factor), and *cyoE* (heme synthesis) and a 70-kb deletion. Genetic analysis revealed that the *yfiR* locus plays a major role in controlling SCV phenotypes, including colony size, growth, motility, and biofilm formation. Moreover, a point mutation in the *fusA* gene contributed to kanamycin resistance. Interestingly, the SCV can partially switch back to wild-type morphologies under specific conditions. Our data also support the idea that phenotypic switching in *P. chlororaphis* is not due to simple genetic reversions but may involve multiple secondary mutations. The emergence of these highly adherent and antibiotic-resistant SCVs within the biofilm might play key roles in *P. chlororaphis* natural persistence.

Pseudomonas chlororaphis 30-84 is a rhizosphere bacterium that is effective against take-all disease of wheat, which is caused by the soilborne fungal pathogen *Gaumannomyces graminis* var. *tritici*. *P. chlororaphis* 30-84 produces several secondary metabolites, including phenazines, that contribute to pathogen inhibition and persistence in the rhizosphere (1). Previous studies revealed additional critical roles of phenazines. For instance, phenazines are involved in bacterial biofilm formation (2). Phenazines also serve as signals and have been shown to regulate the expression of more than 50 genes in the opportunistic pathogenic *Pseudomonas aeruginosa* and 200 genes in *P. chlororaphis* 30-84, respectively (3; D. Wang and E. A. Pierson, unpublished data). Additionally, phenazines have been shown to induce plant defense pathways and play a role in electron shuttling and iron chelation (4–6).

Many bacteria establish long-term populations on their hosts or within specific environments. One strategy for bacterial persistence is the formation of biofilms, bacterial aggregates embedded in a self-produced matrix (7). Compared to free-living cells, the cells living in the biofilm microenvironment may be exposed to smaller amounts of free iron, oxygen, and nutrients (7, 8). To cope with these limiting factors, genes involved in stress response, iron uptake, low oxygen growth, and antibiotic resistance are highly induced under biofilm conditions (7, 8).

Many *Pseudomonas* species undergo phenotypic diversification while adapting to the biofilm environment (9, 10). Small-colony variants (SCVs) are slow-growing (low metabolic activity) isolates commonly characterized by several phenotypes, including chromatin aggregation, high adherence, and enhanced antimicrobial resistance (11). SCVs have been isolated in a wide array of bacterial species, including *Pseudomonas aeruginosa* (11–13) and *Pseudomonas fluorescens* (14). The occurrence of SCVs generally correlates with prolonged persistence and increased antibiotic resistance. A recent analysis of the spatial distribution of *P. fluorescens* SCVs in mixed-culture biofilms with the wild type (WT) reveals that SCVs demonstrate a significant growth advantage over the WT in the biofilm environment (14). The variant strains displaced the WT across the entire biofilm, and this occurred within 24 h. Interestingly, this competitive growth advantage was not observed in homogeneous broth culture. These results further reinforce the hypothesis that SCVs are particularly adapted to the biofilm environment. The SCVs of some strains can phenotypically switch back to the wild-type morphology under certain environmental conditions (11). However, the molecular mechanisms underlying this phenomenon are not well studied, especially at the genomic level.

Whole-genome sequencing and microarray studies also suggest that SCVs adapt genetically and transcriptionally to specific environmental stresses, e.g., antibiotic treatment or nutrient limitation. In *P. aeruginosa* PA01, SCVs contained mutations in the elongation factor *tufA* (11) and the cyclic-di-GMP (c-di-GMP) regulator *yfiR* (15). Importantly, the deletion of *yfiR* in strain...
PA01 resulted in the formation of SCVs and elevated c-di-GMP levels, which indicated a key role of cyclic-di-GMP in phenotypic variation (15). YfIR is one of two negative regulators of YfIN, a diguanylate cyclase originally named TpbB (16). TpbB/YfIN also is controlled by the phosphatase TpbA, and activation of TpbB/YfIN by inactivation of TpbA causes SCV formation (16). These data suggest that YfIR-TbpA-TbpB/YfIN pathways can be linked to the SCV phenotype in *P. aeruginosa*. In addition to genetic changes, SCVs also undergo substantial transcriptional reprogramming. Microarray analyses have been conducted to identify genes responsible for the pleiotropic phenotypes observed in SCVs. In *P. aeruginosa* PA01, 642 genes, representing ~12% of the entire genome, were differentially expressed in an SCV compared with the WT (11). These include genes involved in antibiotic resistance and quorum sensing, which often contribute to the multidrug resistance phenotype. Another study comparing the transcriptome of *P. aeruginosa* 20265 with its SCV derivative indicated changes in the expression levels of genes involved in motility, attachment, virulence, and iron uptake (17). Genome sequencing and transcriptome approaches to understanding adaptation should provide important complements to phenotypic studies of bacterial SCVs (18).

In this study, we examined the transcriptional and genomic alterations associated with the SCV phenotype in the beneficial root-colonizer *P. chlororaphis* 30-84. Genome analysis of a phenotypic revertant strain also was performed to identify genes potentially involved in phenotypic switching. This work comprises a genome-wide evolutionary analysis of a phenotypic switching event in *P. chlororaphis*. Genes identified by genomic or transcriptional approaches will provide novel insights to better understand genetic adaptations during biofilm formation.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The *P. chlororaphis* SCVs used for this study were isolated from biofilm cultures of WT *P. chlororaphis* 30-84. Briefly, bacteria were grown overnight in LB medium and then inoculated at a ratio of 1:150 into 15 ml 15- by 100-mm glass tubes containing 1.5 ml LB. Tubes were incubated without shaking for 6 days to induce static biofilm formation. Phenotypically identical SCVs accounting for ~50% of the total population were consistently isolated from independent biofilm cultures. More than a dozen SCVs from independent biofilm cultures were isolated, and one of the SCVs was selected for this study. Phenotypic revertants were generated by incubating the SCV strain on swimming motility plates (LB medium; 2.5 g agar per liter distilled water). After 3 days of incubation, cells having the wild-type morphology and is deficient in phenazine production. Bacterial strains were grown with aerotransfer at 28°C in PPM medium and AB minimal medium supplemented with 2% CAA for 24 h. Phenazines were extracted and quantified by UV-visible light spectroscopy as described previously (19). Briefly, triplicate 10-ml cultures grown overnight at 28°C with shaking in different media were centrifuged, and the supernatants were acified to approximately pH 2 with concentrated HCl. Phenazines were extracted with an equal volume of benzene for 6 h. Following the evaporation of the benzene under air, phenazines were resuspended in 0.5 ml 0.1 M NaOH, and serial dilutions were quantified via measuring absorbance at 367 nm. The absorbance for each sample was normalized to the total absorbance of the 10-ml culture.

Pathogen inhibition assays. To measure the ability of the WT and SCV to inhibit the pathogen *G. graminis* var. *graminis*, overnight cultures of WT and SCV were spotted onto triplicate LB plates plus 0.5% potato dextrose agar. After 2 days of growth at 28°C, a 5-mm plug of *G. graminis* var. *graminis* was placed in the center of the plates. After 4 days, zones of inhibition, the distance between the edge of the bacterial colony and the fungal mycelium, were measured (19). The assays were repeated three times, and one representative experiment is presented. *P. chlororaphis* 30-84ZN, used as a negative control, carries a mutation in the *phzB* gene and is deficient in phenazine production.

Biofilm formation assay. Biofilm formation was determined as described previously, with slight modifications (2). Briefly, bacterial strains were grown overnight in LB at 28°C with agitation and diluted (1:100) in LB broth. Aliquots of 3 ml of the diluted culture were added to 15-ml polypropylene tubes, and the tubes were incubated at 28°C without shaking. After 48 h, the planktonic bacteria were carefully removed by pipetting, and the tubes were washed with water to remove bacteria that were not firmly attached to the polypropylene surface. To visualize biofilm formation, 3.5 ml of 1% (wt/vol) crystal violet (CV) was added to each tube, and the tubes were incubated at room temperature for 5 min before rinsing in tap water. To quantify biofilm formation, CV was dissolved into 4 ml/µl of acetone-ethanol (20:80), and the CV concentration was determined by measuring the OD420 of a 500-µl sample diluted in 1 ml of water.

Bacterial swimming motility assays. Bacterial cell suspensions were grown overnight in LB medium. A 4-µl volume of the bacterial suspension was plated onto the center of motility agar plates as previously de-
20-fold serial dilutions of bacterial suspensions were made in 96-well plates containing PBS three times. The pellets were resuspended in 200 μl of PBS, and 20-fold serial dilutions of bacterial suspensions were made in 96-well plates. Five-μl aliquots of the suspensions then were spotted separately on LB plates containing kanamycin (100 μg/ml), piperacillin (50 μg/ml), and hydrogen peroxide (3%) and incubated at room temperature for 3 days. The survival percentage was calculated by dividing antimicrobial-treated versus untreated colony-forming numbers. The dilution of each strain was carried out in triplicate. The experiment was repeated at least three times.

RNA preparation for RNA-seq and quantitative PCR (qPCR) analyses. Two (SCV) or three (WT) biological replicates were started from single colonies located on separate plates containing AB plus 2% CAA and then transferred to 1.5 ml AB plus 2% CAA broth. All cultures were grown at 28°C in shaking tubes to an approximate OD600 of 1.8. RNA extraction was performed as described previously (19). rRNA was depleted from 5 μg total RNA using the RiboZero rRNA depletion kit (for Gram-negative bacteria; Epicentre Biotechnologies, Madison, WI). RNA quantification was achieved using a GE NanoVue Plus spectrophotometer (GE Healthcare Bio-Sciences Corp., Piscataway, NJ), and RNA quality was monitored with an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Separate libraries of the WT and SCV were created prior to RNA-sequencing (RNA-seq) analysis.

RNA-seq analysis. RNA-seq analysis was performed at Otagenetics, Atlanta, GA. Briefly, cDNA was generated from the RNA-depleted RNA using the NEBNext mRNA sample prep kit (New England BioLabs, Ipswich, MA, USA). The resulting cDNA was profiled using an Agilent Bioanalyzer, fragmented using Covaris (Covaris, Inc., Woburn, MA, USA), and subjected to Illumina library preparation using NEBNext reagents (New England BioLabs, Ipswich, MA, USA). The quality and quantity and the size distribution of the Illumina libraries were determined using an Agilent Bioanalyzer 2100. The libraries then were submitted for Illumina HiSeq2000 sequencing according to the standard operation. Paired-end 90- or 100-nucleotide (nt) reads were generated and checked for data quality using FASTQC (Babraham Institute, Cambridge, United Kingdom).

Based on gene annotation information, reads were mapped to the genome, resulting in a compressed binary version of the sequence alignment map (BAM files). To determine the transcriptional abundance for each gene, the number of reads that mapped within each annotated coding sequence (CDS) was determined. The number of reads per kb of transcript per million mapped reads (RPKM) was used to normalize the raw data (21), and mean RPKM values were determined for both the wild-type and SCV samples. A ratio of the mean RPKM values (SCV/WT) was computed for each gene, and comparisons were performed using EdgeR (22). Genes were identified as being differentially expressed based on the RPKM ratios (SCV/WT) when the P value was less than 0.05 and the expression ratio was ≥2.0 or ≤0.5 (see Table S2 in the supplemental material).

qPCR methods and analysis. qPCR was performed at the Gene Expression Service Center at Texas A&M University using a previously described method (19). SYBR green reactions were performed using the ABI 7900 HT Fast system (Applied Biosystems, Foster City, CA) in 384-well optical reaction plates. Aliquots (1 μl) of cDNA (2 ng/reaction mixture) or water (no-template control) were used as the template for qPCRs with Fast SYBR green PCR master mix (Applied Biosystems) and primers (500 nM final concentration). Primer pairs katART1-katAYRT2, katBRT1-katBRT2, pvdART1-pvdART2, fpaART1-fpaART2, phzBRT1-phzBRT2, fusART1-fusART2, cyoERT1-cyoERT2, flicRT1-flicRT2, phzRT1-phzRT2, rpoDRT1-rpoDRT2, and hfqRT1-hfqRT2 were used to detect the expression of katA, katB, pvdA, fpaA, phzB, fusA, cyoE, flic, phzB, rpoD, and hfq genes, respectively (see Table S1 in the supplemental material). qPCR amplifications were carried out at 50°C for 2 min, 95°C for 10 min, 40 cycles of 95°C for 15 s and 60°C for 1 min, and a final dissociation curve analysis step from 65°C to 95°C. Technical replicate experiments were performed for each biological triplicate sample. Amplification specificity for each reaction was confirmed by dissociation curve analysis. Determined threshold cycle (Ct) values then were used for further ΔΔCt analysis. The hfq and rpoD genes were used as the reference genes to normalize samples. The fold differences in the expression of target genes between the WT and SCV were comparable using either hfq or rpoD as the reference gene. A relative quantification (RQ) value was calculated for each gene, with the control group as a reference (19, 21).

Genome sequencing and identification of genetic variations. Genome sequencing was performed using a MiSeq sequencer with 250-bp read chemistry (Illumina). A modified TruSeq DNA Sample Prep v2 and MiSeq sequencing protocol was used during the sequencing process (23). Briefly, genomic DNA from the WT, SCV, and the phenotypic revertant was isolated from overnight cultures using the DNeasy Miniprep kit (Qia-gen, Hilden, Germany). The genomic library was constructed using 1 μg of genomic DNA fragmented by a Covaris E210 instrument. The samples then were run on a gel and size selected for a range of 400 to 500 bp to accommodate the longer read length capability of the MiSeq sequencer. The size-selected library underwent 10 cycles of PCR. The libraries were quantified using the Qubit double-stranded DNA high-sensitivity assay (Invitrogen, Carlsbad, CA, USA). The sequencing program was set up to generate 2–250 base-paired reads.

MiSeq sequencing generated a total of 6,954,294 reads. The reads were mapped to the reference genome of *P. chlororaphis* 30-84 (NCBI accession number NZ_CM001559). The reads were trimmed using the Perl script illumina_fastq_QC.pl (https://github.com/chienchi/IFQC) with a quality threshold of 5 to remove sequences of low read quality or sequences with adapters. The program also filtered reads with more than two continuous ambiguous bases and low-complexity reads (mono/dinucleotide repeats). The Burrows-Wheeler Aligner software (default parameters; version 0.6.2-r126-tpx) (24) was used to map Illumina reads to the *P. chlororaphis* 30-84 genome. This software includes a gapped alignment algorithm, which improves the detection of indel read pairs (90.67% of the original reads). Reads were mapped to unique locations, resulting in a median read depth (genome coverage) of 46. Single-nucleotide polymorphisms (SNPs) and indels were detected with SAMtools software (version 0.1.19) using its built-in function “miuplex” and the “btcolos view” and “vcfutil-spl varFilter” commands in a pipeline to call the SNPs (24). Custom scripts developed by the Los Alamos National Laboratory were used to filter the variants based on a minimum overall quality of 20 reads and variant location in the repeats. The resulting SNPs/indels and zero-coverage regions of the reference genome were compared with GenBank annotation to report affected genes.

GEO accession number. The complete data set from this study has been deposited in the NCBI Gene Expression Omnibus (GEO) under accession no. GSE51293.

RESULTS

Phenotypic characterization of a *P. chlororaphis* SCV. (i) Cell morphology and growth. The colony morphologies of the WT and SCV on LB agar plates are shown in Fig. 1A. Isolated colonies formed by WT *P. chlororaphis* after 3 days of incubation at 28°C are round (~4.0 ± 1.1 mm in size), with smooth, regular margins. In contrast, SCV colonies appear rugged and small (~0.6 ± 0.5 mm in diameter). Morphological differences were reflected at the single-cell level (Fig. 1B). Typically present in the center of SCV cells was a dark area not found in WT cells grown under these environmental conditions, possibly due to the condensation of the nucleoid. Reduced metabolic activity and slower growth are characteristic of SCVs of many bacterial species (18). Consistent
with this, the SCVs of *P. chlororaphis* 30-84 grown in liquid LB entered the exponential phase later than the WT; thus, they displayed a longer lag phase (Fig. 1C).

(ii) *P. chlororaphis* SCV produces smaller amounts of phenazines than the wild type. Phenazine production was quantified by spectrophotometric assays for bacteria grown in AB minimal medium plus 2% Casamino Acids (19). Phenazine production by SCV (2.1 ± 0.4 at OD_{367}) was significantly reduced compared to that of the WT (3.5 ± 0.3 at OD_{367}). The production of phenazines is largely responsible for the ability of *P. chlororaphis* 30-84 to inhibit the growth of fungal pathogens (20). The ability to inhibit the growth of the plant pathogen *G. graminis* was determined using an in vitro plate inhibition assay. The WT strain produced a fungal inhibition zone of approximately 7.5 ± 0.9 mm at 4 days postinoculation, whereas the phenazine-defective mutant *P. chlororaphis* 30-84ZN resulted in significantly low inhibition (inhibition zone, 1.0 ± 0.6 mm). Consistent with low levels of phenazine production, the SCV also was diminished in its ability to inhibit the fungal growth at 4 days postinoculation, producing a mean inhibition zone of 3.2 ± 0.7 mm.

(iii) *P. chlororaphis* SCV is sessile and highly adhesive. Previous studies demonstrated that SCVs typically are reduced in motility but increased in surface attachment (11, 12). To determine whether *P. chlororaphis* SCVs are altered in attachment, the ability of the wild type and SCV to form biofilms on a water-air interface was evaluated using a standardized crystal violet method (2). Analysis revealed that biofilms (attached bacterial cells) formed by the SCV were 7-fold greater than those of the WT strain (Fig. 1D). These results confirm that the *P. chlororaphis* SCV cells are highly adhesive to solid surfaces.

Bacterial motility by the wild type and SCV was measured by inoculating bacterial cells on a motility plate (0.25% agar) and measuring the diameter of the circle covered by bacterial cells for up to 32 h, as described previously (21). The SCV was almost completely defective in motility compared with the WT (Fig. 1E). The diameters of circles delimiting WT and SCV populations were 6.7 ± 0.2 and 2.8 ± 0.1 cm, respectively (Fig. 1F). These results demonstrate that the SCV of *P. chlororaphis* 30-84 also is impaired in motility.

(iv) *P. chlororaphis* SCV has enhanced antimicrobial resistance compared to the wild type. One of the most remarkable features of SCV's is enhanced antimicrobial resistance (18). To determine whether the *P. chlororaphis* SCV is more resistant to antimicrobials, WT and SCV were tested for their sensitivity to kanamycin, pipercillin, and hydrogen peroxide, and the survival rates of each strain were determined. On LB plates, the growth of wild-type *P. chlororaphis* was inhibited at a kanamycin concentration of 25 μg/ml or above (Fig. 2A). In contrast, the SCV grew even at 100 μg/ml. The SCV also was more resistant to pipercillin and hydrogen peroxide (Fig. 2B). The survival rates of the WT were 0%, 12%, and 32% when grown with kanamycin, pipercillin, and hydrogen peroxide, respectively, whereas those of SCV were increased to 93%, 74%, and 75%, respectively. These results indicate that the *P. chlororaphis* SCV is more resistant to a range of antimicrobials.

Global gene expression profiles in the SCV. To further define the causes for the phenotypic differences observed between the wild type and SCV, an RNA-seq approach was utilized to identify genes differentially expressed. We compared the SCV to the WT grown in AB minimal medium with 2% CAA at 18 h in late exponential growth. RNA-seq data (short reads) were aligned to the genome, and gene expression values were quantified as reads per kilobase of coding sequence (CDS) length per million reads (RPKM), as described previously (21). In order to identify genes differentially expressed in SCV, mean RPKM values for the SCV were compared with those for the WT using EdgeR (22). A total of 1,098 genes exhibited altered expression profiles in the SCV relative to the WT strain. Among them, 727 genes were upregulated and 371 genes were downregulated, indicating extensive transcriptional reprogramming in SCV cells (see Table S2 in the supplemental material).

Transcription of genes involved in specific metabolic functions was reduced in the SCV compared to that of the WT. It has been proposed that condensed chromatin contributes to the low
metabolic activity observed among the SCVs of some bacteria (25). One possibility is that condensed chromatin results in the decreased expression of metabolic genes. Consistent with this hypothesis, the expression of genes involved in primary metabolism was lower in the SCV than in the WT strain (see Table S3 in the supplemental material). These included genes that may be involved in housekeeping functions, such as protein translation (18 genes), transcription (2 genes), energy production (16 genes), and cell division (2 genes). These results further support the notion that P. chlororaphis 30-84 SCVs are less metabolically active than the WT.

SCV showed differential expression of genes involved in biofilm formation. Consistent with the measured reduction in phenazine production, the phenazine biosynthetic genes were down-regulated 2- to 4-fold in the SCV (see Table S4 in the supplemental material). In *P. chlororaphis* 30-84, phenazine expression is regulated by a complex regulatory network, including quorum sensing (phzI-phzR and csal-csaR), two-component regulatory systems (rpeA-rpeB and gacS-gacA), the phenazine-inducing protein (pip), the sigma factor rpoS, and the noncoding RNA rsmZ (19). Interestingly, the expression of these genes was not differentially changed in the SCV relative to the WT (data not shown). These data suggest that phenazine production is regulated by an as-yet unknown mechanism in the SCV. Since phenazines positively control biofilm formation, the reduction of phenazine synthesis in the SCV should decrease the level of biofilm formation. Interestingly, the SCV produced more surface-attached biofilm than the WT. These results suggest that surface-attached biofilm in the SCV is controlled by genes and traits in addition to phenazines. Indeed, the expression of an 11 gene cluster annotated as a type IV pili biosynthesis cluster was 2- to 15-fold higher in the SCV than in the WT (see Table S4 in the supplemental material). It has been shown that type IV pili function in *P. aeruginosa* twitching motility and attachment (17). It is possible that the overexpression of these genes confers greater adherence ability in SCV. The motility of *P. chlororaphis* 30-84 requires flagellar genes, and mutation in the *floM* gene completely abolished motility (21). Transcript abundances of seven flagellar genes were lower in the SCV than in the WT (see Table S4). These genes are annotated as encoding the flagellar hook-associated protein (FlgK and FlgL), the flagellar motor switch protein (FlIG), the flagellar assembly protein (FlIIH), the flagellum-specific ATP synthase (FlII), the flagellar export protein (Flil), and flagellin (FlIC). This is in agreement with the reduced swimming motility of SCV. Moreover, it was proposed that the reduction of flagella helps to stabilize the three-dimensional structure of the mature biofilm (5). The enhanced ability of SCV to form biofilms may be a consequence of the differential expression of genes involved in the production of pili and flagella (see Table S4).

Expression of stress-related and iron uptake genes was increased in the SCV. The exposure of *P. chlororaphis* SCV to antimicrobials on solid agar, including hydrogen peroxide, revealed a higher level of resistance to oxidative stress than that in the WT strain (Fig. 2B). This indicates that this clonal small-colony variant is especially adapted to oxidative stress. Supporting these results, the key oxidative stress regulator oxyR was found to be significantly induced in the SCV (see Table S5 in the supplemental material). This LysR-type redox sensor binds DNA as a dimer while responding to elevated cellular levels of reactive oxygen species (ROS) (26). In *P. aeruginosa*, activated OxyR (encoded by PA5344) stimulates the expression of katA, katB, ahpB, and ahpCF, which encode catalases and alkyl-hydroxy peroxidases (27). Besides having a crucial role in upregulating oxidative stress defense, OxyR contributes to *P. aeruginosa* iron acquisition by activating genes involved in pyoverdine biosynthesis and utilization (28). In agreement with these results, five oxidative stress scavenging genes, including *katABG* and *ahpCF*, and 18 iron uptake genes, including *pvd* genes for pyoverdine synthesis and *tonB* and *exb* genes for pyoverdine utilization, were highly expressed in the *P. chlororaphis* SCV (see Table S5).

Validation of RNA-seq. To validate the expression profiles obtained by RNA-seq, quantitative reverse transcription-PCR (qRT-PCR) was performed on 9 selected genes; these included genes encoding components of the quorum-sensing systems; proteins involved in heme, flagellar, phenazine, and pyoverdine synthesis; and enzymes previously shown to detoxify reactive oxygen species. The data (e.g., fold differences in mutant versus WT transcript abundances) from the qRT-PCR analysis were comparable to those obtained by the RNA-seq analysis for all selected genes (see Fig. S1 and Table S2 to S5 in the supplemental material), validating the RNA-seq data.

Genome variation between WT and SCV and complementation analysis. To identify genetic differences between the WT and SCV, the genomes of both strains were sequenced. Notably, a mutation was mapped to a gene annotated as yfiR and harboring an in-frame 33-bp deletion in its coding sequence (Table 1). This mutation causes a deletion of 11 amino acids (VLVQRLLADNP) between residues 94 and 104 of YfiR. This periplasmic protein is a negative regulator of cyclic-di-GMP synthesis (13). In *P. aeruginosa*, mutation of yfiR results in the accumulation of cyclic-di-GMP and the formation of SCV.

To determine whether the specific genetic mutation in yfiR was responsible for the observed phenotypic changes, we expressed
the wild-type yfiR gene in the SCV. The presence of the wild-type yfiR gene complemented most SCV phenotypes, including motility, colony size, cell morphology, growth, and biofilm formation (Fig. 3A to E). Phenazine produced by the yfiR complemented strain was similar to that produced by the WT (e.g., 3.4 ± 0.3 at OD₆₀₀). These data indicate that YfiR is responsible for most observed phenotypes in the SCV. Interestingly, the SCV complemented by WT YfiR remained antibiotic resistant, indicating that the antibiotic resistance of the SCV is controlled by other factors.

In addition to the mutation in yfiR, other short insertions, deletions, and SNPs were detected (Table 1). In line with the transcriptional analysis, changes were identified in genes annotated as fusA (elongation factor G) and cyoE (protoheme farnesyltransferase) (Table 1). The fusA gene contains an SNP which substitutes an alanine (A) for valine (V) at residue 664. In Salmonella enterica serovar Typhimurium, point mutations in the fusA gene can lead to an increased resistance to kanamycin and fusidic acid (29). CyoE is involved in the production of heme, a cofactor involved in oxygen-dependent electron chain reaction (30). A previous report showed that the disruption of the electron transport chain reduced the membrane potential and the ability to take up antibiotics, e.g., leading to increased resistance to aminoglycosides (31).

An in-frame 12-bp insertion potentially resulted in the addition of 4 amino acids (ILLY) at positions 208 to 211 in CyoE (Table 1). It is possible that changes in the residues in the 6th transmembrane domain by the addition of 4 hydrophobic amino acids alters the conformation of CyoE sufficiently to affect transport (see Fig. S2 and S3 in the supplemental material).

To test the role of FusA in the antibiotic resistance of the SCV, the altered fusA from the SCV was introduced into the WT, resulting in increased kanamycin resistance, but not to the level of resistance seen in the SCV (Fig. 3F). However, failure of the altered fusA to induce the SCV level of kanamycin resistance when expressed in trans in the wild-type background is not unexpected, given the existence of a wild-type copy of fusA in the genome.

![FIG 3](http://aem.asm.org/)

TABLE 1 List of genetic changes in *P. chlororaphis* SCV and phenotypic revertant

<table>
<thead>
<tr>
<th>Gene identifier</th>
<th>Gene</th>
<th>Protein description</th>
<th>Type</th>
<th>Protein change</th>
<th>Position on protein</th>
<th>Presence in.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pchl3084_0735</td>
<td>yfiR</td>
<td>Periplasmic protein</td>
<td>33-bp deletion</td>
<td>In-frame deletion</td>
<td>94–104</td>
<td>+</td>
</tr>
<tr>
<td>Pchl3084_4816</td>
<td>cyoE</td>
<td>Protoheme farnesyltransferase</td>
<td>12-bp insertion</td>
<td>In-frame insertion</td>
<td>208–211</td>
<td>+</td>
</tr>
<tr>
<td>Pchl3084_0164</td>
<td>Glycosyl hydrolase</td>
<td>SNP</td>
<td>A to T</td>
<td>1188</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pchl3084_5323</td>
<td>fusA</td>
<td>Elongation factor G</td>
<td>SNP</td>
<td>A to V</td>
<td>664</td>
<td>+</td>
</tr>
<tr>
<td>Pchl3084_1083</td>
<td>xerD</td>
<td>Tyrosine recombinase</td>
<td>2-bp insertion</td>
<td>Frame shift</td>
<td>276</td>
<td>–</td>
</tr>
<tr>
<td>Pchl3084_0637</td>
<td>Precorrin methyltransferase</td>
<td>SNP</td>
<td>R to G</td>
<td>126</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Pchl3084_0840</td>
<td>Hypothetical protein</td>
<td>SNP</td>
<td>N to S</td>
<td>220</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Pchl3084_1162</td>
<td>cysA</td>
<td>Phosphatidate cetylthioltransferase</td>
<td>SNP</td>
<td>F to L</td>
<td>214</td>
<td>–</td>
</tr>
<tr>
<td>Pchl3084_1218</td>
<td>Phage tail protein</td>
<td>SNP</td>
<td>G to A</td>
<td>219</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Pchl3084_3246</td>
<td>Transcriptional regulator</td>
<td>SNP</td>
<td>A to D</td>
<td>346</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Pchl3084_4624</td>
<td>bifA</td>
<td>Phosphodiesterase</td>
<td>SNP</td>
<td>V to L</td>
<td>598</td>
<td>–</td>
</tr>
</tbody>
</table>

a +, presence of mutations; –, absence of mutations.

![FIG 3](http://aem.asm.org/)

FIG 3 Phenotypes of the yfiR and fusA complemented strain. (A) Comparison of colony sizes of *P. chlororaphis* WT, SCV, and the yfiR complemented strain. Bacteria were grown on LB plates for 3 days. (B) Transmission electron microscopy analysis of cell morphology for *P. chlororaphis* WT, SCV, and the yfiR complemented strain. (C) Growth curves of *P. chlororaphis* WT, SCV, and the yfiR complemented strain in LB broth at 28°C. (D) Biofilm formation by *P. chlororaphis* WT, SCV, and the yfiR complemented strain. The amount of CV staining was quantified at OD₅₄₀, and bars indicate SE. (E) Motility comparison of *P. chlororaphis* WT, SCV, and SCV harboring WT yfiR. Bacterial strains were spotted at the center of the motility plate (0.25% agar) and incubated at 28°C. Diameters were measured at 32 h postinoculation. (F) Survival rates in response to kanamycin. Similar amounts (OD₆₀₀ = 0.1) of different bacterial strains were inoculated on LB plates containing 10 μg/ml kanamycin. The picture was taken 3 days after inoculation. All data points represent means ± SE from nine biological replicates in three independent experiments.
Figure 4 Phenotypes of the phenotypic revertant strain. (A) Comparison of colony sizes of *P. chlororaphis* WT, SCV, and phenotypic revertant strains. Bacteria were grown on an LB plate for 3 days. (B) Colony sizes on LB plates. Different strains were grown at 28°C on an LB agar plate for 3 days. (C) Growth curves of *P. chlororaphis* WT, SCV, and phenotypic revertant strains in LB broth at 28°C. Original inocula from stationary-phase cultures were inoculated at a volume-to-volume ratio of 1:1,000. (D) Biofilm formation by *P. chlororaphis* WT, SCV, and phenotypic revertant strains. Biofilm production was normalized to an OD₆₀₀ of 1 for different strains. (E) Motility comparison of *P. chlororaphis* WT, SCV, and the phenotypic revertant. Bacterial strains were spotted at the center of the motility plate (0.25% agar) and incubated at 28°C. Diameters were measured at 32 h postinoculation. (F) Survival rates in response to kanamycin. All data points represent means ± SE from nine biological replicates in three independent experiments.

DISCUSSION

In this study, an SCV obtained from a biofilm culture has been systematically investigated at the phenotypic, transcriptional, and genomic levels. Changes in growth, motility, and phenazine production, as well as biofilm formation and antimicrobial resistance, correlate well with changes in gene expression as analyzed by genome-wide RNA-seq analysis. In addition, spontaneous mutations in *yifR* and *fusA* are linked to key phenotypes in the SCV. This confirms that the changes in the SCV across these diverse cellular processes are controlled by genetic variations. Furthermore, phenotypic revertants were recovered that were similar to the WT in colony size, growth rate, biofilm formation, and motility but remained as resistant to kanamycin as the SCV. These results suggest that the SCV undergoes partial phenotypic switching, but no measurable changes in phenotypes (data not shown). Future experiments are needed to characterize the contribution of the other genes to the revertant phenotype.
results suggest that the SCV undergoes partial phenotypic switching, but that the antibiotic resistance phenotype of the SCV can be retained by the revertant. This observation has important clinical implications, since phenotypic switching provides a mechanism for the development of antibiotic resistance. These results also highlight the strength of coupled phenotypic and transcriptomic analyses, in combination with whole-genome sequencing, as an approach to unravel complex bacterial adaptations.

A role for cyclic-di-GMP in phenotypic variation has been suggested previously. In *P. aeruginosa* PAO1, an SCV having the characteristic phenotypes (small-colony morphology, decreased motility, and enhanced attachment) emerged as a result of transposon mutagenesis of the cyclic-di-GMP regulator *yfiR*. A model for how *YfiR* repression of *YfIN* (TpbB) regulates cyclic-di-GMP levels and SCV formation was proposed (15). Cyclic-di-GMP anabolism is driven by the catalytic activity of GGDEF motif-containing diguanylate cyclases (DGC), such as *YiN*, which generate c-di-GMP from two molecules of guanosine-5'-triphosphate (GTP). C-di-GMP catabolism is driven by the catalytic activity of EAL motif-containing phosphodiesterases (PDE), which break down c-di-GMP into 5'-phosphoguananyl-(3'-5')-guanosine (pGpG) (34). *YfiR* is a periplasmic protein that serves as a repressor of *YfIN* (TpbB). Mechanistically it is believed that *YfiR* binds to *YfIN* (TpbB) and halts the conversion of the two GTP molecules to c-di-GMP by *YfIN* (TpbB). Consistent with this model, deletion of *yfiR* in *P. aeruginosa* resulted in increased c-di-GMP levels, linking changes in the c-di-GMP pool to characteristic SCV phenotypes (15). It is hypothesized that c-di-GMP levels control phenotypic changes by interacting with proteins or riboswitches that control gene expression or the activity of enzymes and complex cellular structures (34). It is further speculated that these changes are involved in the transition from motile to non-motile lifestyles (34). In *P. chlororaphis* 30-84, complementation of the SCV with a wild-type copy of *yfiR* restored the wild-type colony morphology, motility, biofilm formation capability, and growth rate. Although the accumulation of c-di-GMP was not measured, our results are consistent with the *P. aeruginosa* model and suggest that mutation of *yfiR* in the SCV lessened the affinity of *yfiR* to bind to and repress the catalytic activity of *YfIN*. This would result in the accumulation of c-di-GMP and, ultimately, the SCV phenotype.

Retention of the SCV mutations in *yfiR* in the phenotypic revertant suggested that the revertant phenotype was derived from secondary mutations. We hypothesized that these mutations either affect c-di-GMP levels (e.g., reduce pools to be more similar to wild-type levels) or directly affect phenotypes controlled by c-di-GMP levels, e.g., type IV pili or extracellular polymeric substance production (13, 15, 35). The phenotypic revertant characterized in this study had a point mutation in the gene encoding a well-studied PDE, *bifA* (33, 36). Hypothetically, a mutation that increases the catalytic activity of the PDE *bifA* could counteract the effects of the *yfiR* mutation by breaking down the c-di-GMP that accumulated in the cells as a result of the unregulated catalytic activity of *YfIN* (TpbB). Interestingly, the introduction of the revertant copy of *bifA* into the SCV did not result in any noticeable phenotypic changes. These results suggest that the mutation to *bifA* observed in the phenotypic revertant was not responsible for the emergence of the revertant phenotype, and that another mutation(s) observed in the revertant is responsible for the phenotypic change. Future work will include complementation assays to determine the genetic change responsible for the phenotypic reversion.

The SCV characterized in this study was highly resistant to the aminoglycoside kanamycin. The molecular mechanisms of bacterial uptake and resistance to aminoglycosides have been studied extensively. Antibiotic resistance to aminoglycosides typically arises from alterations to the target of aminoglycoside antibiotic action, the protein synthesis machinery (37, 38). However, the inability of the highly polar aminoglycosidic molecules to cross the outer and inner membranes or the presence of enzymes to inactivate the aminoglycoside also may contribute to resistance (37, 38). To understand the antibiotic resistance phenotype of the SCV and the revertant, we focused on genes that may influence these antibiotic resistance mechanisms. Kanamycin inhibits protein synthesis by binding the 30S ribosome and inhibiting the translocation of the ribosome and proofreading capability of the protein synthesis machinery (37). Previously, mutations to elongation factor G (EF-G) encoded by the gene *fusA* led to slight increases in resistance to kanamycin (29). Elongation factor G is involved in the translocation of the ribosome during protein synthesis, and mutations to EF-G may alter the capability of kanamycin to bind the ribosome to prevent translocation. In *P. chlororaphis* 30-84, the introduction of the altered *fusA* from the SCV into the wild type resulted in an increase in resistance to kanamycin. The possibility that changes in antibiotic uptake by the SCV also contributed to antibiotic resistance was suggested by the finding that several genes involved in electron transport were expressed to a much lesser extent in the SCV than in the wild type. The uptake of aminoglycosides into the bacterial cell is dependent on the membrane potential generated by the activity of the electron transport chain (37, 39–42). We hypothesize that the compound effects of decreased expression of electron transport genes will lower the efficiency of the electron transport system, thereby diminishing the membrane potential and the amount of kanamycin taken up by the cell, as has been reported previously (18, 41, 42). The results of this study suggest that antimicrobial resistance in the SCV, the revertant, and the SCV complemented with wild-type *yfiR* is a complex phenotype regulated in part by *FusA* but likely is the result of a combination of mechanisms.

In the rhizosphere, *P. chlororaphis* must deal with antimicrobials released by plants and microbes, including ROS. Moreover, *P. chlororaphis* must compete with the surrounding microbial communities for nutrients such as iron. The expression of genes involved in ROS detoxification and iron uptake are highly upregulated in the SCV. These data suggest that the SCV are especially adapted to oxidative stress and low iron conditions in the rhizosphere. The increased adherence ability of SCV may enhance its physical association with plant roots or fungal hyphae to better acquire nutrients and live in plant-associated biofilm communities. The prevalence of SCV of *P. chlororaphis* 30-84 and other pseudomonads in both laboratory and natural environments suggests that there is some benefit to the SCV phenotype and some level of selection to maintain this phenotypic variation within the species. Further characterization of genes identified through RNA-seq analysis will provide a more detailed understanding of the genetics of phenotypic switching and the contribution of this mechanism to adaptation of this biological control bacterium.
ACKNOWLEDGMENTS

This project was supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory and USDA NIFA NRI Competitive Grants project no. 2008-35319-21879.

REFERENCES

