








DISCUSSION

pH in biofilms is an ecological determinant for bacterial metabo-
lism. In dental biofilm, it is the key virulence factor for the devel-
opment of caries lesions, and only fluorescence microscopic tech-
niques offer the possibility to monitor biofilm pH in different
microenvironments in real time. Fluorescence life-time imaging
(FLIM), pH-sensitive nanoparticles, and pH-sensitive ratiometric
dyes have been employed to measure biofilm pH microscopically.
Although none of these techniques rely on a uniform distribution
of the fluorescent dye in the biofilms for pH calculations, the dye
concentration has to be high enough in all areas of the biofilm to
allow for quantification. This proved to be a problem for pH-
sensitive nanoparticles, which mainly bound to bacterial surfaces
and left channels and voids filled with extracellular matrix un-
stained (32). In dental biofilms, pH in these areas is of crucial
importance for the outcome of caries. The present study proves
that the ratiometric dye C-SNARF-4 penetrates well into young in
vivo-grown multispecies biofilms and allows the recording of pH
in all areas of interest (Fig. 4).

Extracellular pH and intracellular bacterial pH differ consider-
ably in biofilms. Quantitative microscopic techniques should be

able to differentiate reliably between these compartments, but
none of the hitherto published reports have addressed this prob-
lem sufficiently. Vroom et al. employed carboxyfluorescein for
FLIM and claimed that the charged carboxy group prevents the
dye from penetrating the cell (31). With a pKa of �6.5, however,
most of the molecule is protonated and, consequently, uncharged
at low pH. In the published confocal microscopic images, bacterial
cells are clearly visible in carboxyfluorescein-stained biofilms,
which indicates that the dye was up-concentrated in the cells. As a
consequence, the displayed pH values represent a mixture of pH
in intra- and extracellular compartments. Likewise, Hunter
and Beveridge, who were the first to use C-SNARF-4 in a bac-
terial biofilm, report that Pseudomonas aeruginosa cells internal-
ized the dye and were discernible from the background (34).
However, no measures were taken to remove intracellular areas
from the microscopic images before pH calculation. Franks et
al. employed C-SNARF-4 in current-generating Geobacter sul-
furreducens biofilms (35), using the same approach as Hunter
and Beveridge. Without differentiating between extracellular
and intracellular compartments, pH was calculated for square
areas in the analyzed microscopic fields of view, yielding an
average of intra- and extracellular pH.

In order to truly map extracellular pH in a biofilm, it is critical
to visualize the bacterial biomass in the biofilm and exclude it
from pH calculations. Using a second, non-pH-sensitive dye to
stain bacteria and later remove them via digital image analysis
would induce the risk of fluorescent contamination of the extra-
cellular space, which might compromise pH calculations. Hunter
and Beveridge used green fluorescent protein (GFP) to visualize P.
aeruginosa, and there is an overlap between the fluorescent emis-
sions of C-SNARF-4 and GFP. The fluorescent emission of
mCherry, used by Franks et al. to visualize G. sulfurreducens cells,
peaks at 611 nm and shows considerable overlapping of the red-
spectrum emission of C-SNARF-4. Leakage of these dyes into the
extracellular compartment compromises fluorescence intensity
ratios calculated for pH measurement.

Therefore, in the present study, we investigated the use of C-
SNARF-4 in a double function, as both a pH-sensitive ratiometric
dye and a bacterial stain. We chose 15 different bacterial strains
commonly isolated from supragingival dental biofilm and ob-
served that C-SNARF-4 stained both viable and membrane-
compromised cells at low pH (4.0 to 5.5) (Fig. 1; see also Fig. S3
in the supplemental material). Moreover, we showed that C-
SNARF-4 stained the entire bacterial biomass in in vivo-grown
dental biofilms of unknown bacterial composition (Fig. 3A to
D and 4). This suggests that C-SNARF-4 serves as a universal
bacterial stain.

Following image acquisition, we used the digital image analysis
software daime to determine and remove the bacterial biomass
from the microscopic images (see Fig. S5 in the supplemental
material). Thereafter, fluorescent ratios could be calculated exclu-
sively for the extracellular compartment and converted to pH val-
ues (Fig. 4). In principle, digital image analysis might well be em-
ployed to remove the extracellular space in the biofilm images and
calculate fluorescent ratios inside bacterial cells. However, so far
the calibration of C-SNARF-4 has been performed only for the
extracellular space, using characteristic biofilm matrix compo-
nents (34) and unstained biofilms as controls (39). Intracellular
pH recordings would require a thorough calibration of the dye
prior to quantitative interpretation of the fluorescence ratios (42).

FIG 3 In vivo-grown dental biofilms, kept in HEPES buffer at pH 4.0 (A
and B), pH 5.5 (C and D), and pH 7.0 (E and F), were stained with C-
SNARF-4 (A, C, and E) and counterstained with BacLight (B, D, and F). In
the range between pH 4.0 and pH 6.0, the entire bacterial biomass is reli-
ably stained with C-SNARF-4 compared to the positive-control stain. Both
viable and membrane-compromised cells are stained with C-SNARF-4. At
pH values above 6.0, the contrast between C-SNARF-4-stained bacteria in
the biofilms and the background decreases, and the bacterial biomass be-
comes hard to identify. Bars, 20 �m.
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At higher pH (5.5 to 8.0), the staining properties of C-
SNARF-4 decreased, and it became difficult to distinguish be-
tween bacterial cells and the extracellular space, both in pure cul-
tures (Fig. 2) and in dental biofilms (Fig. 3E and F). C-SNARF-4
has a pKa of �6.4, and only at low pH are the majority of the dye
molecules protonated and uncharged. Only the uncharged mole-
cule penetrates the bacterial membrane, binds to intracellular
structures, and is up-concentrated in the bacteria. Therefore, ra-
tiometric pH analysis with C-SNARF-4 is limited to biofilms in
acidic environments.

Interestingly, cells in C-SNARF-4-stained dental biofilms in-
cubated with glucose became visible immediately after exposure
to glucose. The calculation of average pH in the imaged micro-
scopic fields of view showed that the biofilms were clearly distin-
guishable when the average pH was still well above 6.0 (i.e., 6.75)
(Fig. 4). The most likely explanation for this observation is that
bacterial acid production lowered the pH in the immediate sur-
roundings of the cell, so that C-SNARF-4 was up-concentrated in
the cells, while the average pH in the microscopic field of view still
was high. This increases the applicability of C-SNARF-4 for mon-
itoring extracellular pH in acid-producing biofilms.

Compared to FLIM and the use of pH-sensitive nanoparticles,
ratiometric imaging with the pH-sensitive fluorescent probe C-
SNARF-4 is cheaper and requires less technical equipment. The
probe readily penetrates bacterial biofilms and equilibrates
quickly, permitting the monitoring of biofilm pH immediately
after growth. This might be of particular importance for pH anal-
ysis of in vivo-grown samples. pH ratiometry with C-SNARF-4 is
limited by the use of confocal microscopy for image acquisition, as
thicker biofilms cannot be imaged in their entirety with a confocal
microscope due to the absorption of excitation energy and the
scattering of photons by the specimen. In thick dental biofilms,
reliable differentiation between extra- and intracellular fluores-

cence was possible up to a depth of ca. 75 �m (see Fig. S4 in the
supplemental material). To record pH z profiles in thicker bio-
films, microelectrodes remain the method of choice.

We proved here that C-SNARF-4 can be used as both a bacte-
rial stain and a pH-sensitive ratiometric probe. The combination
of confocal microscopic imaging and digital image analysis per-
mits the removal of the bacterial biomass from biofilm images and
monitoring of extracellular pH microenvironments in real time in
bacterial biofilms.
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