










phenotype consisting of increased chain lengths and autoaggrega-
tion (Fig. 4A). Complementation of acmB in the �acmB strain
(C�acmB) resulted in a return to WT morphology (Fig. 4A). This
cell division-related morphology was quantified by measuring the
chain lengths of dividing cells throughout the 24-h time course
(Fig. 4B). Both the WT and C�acmB strains demonstrated proto-
typical chain lengths which followed a standard bacterial growth
curve (Fig. 4B, white and striped bars). Specifically, chain lengths
increased from lag phase to logarithmic phase (hours 1 to 6) and
decreased as a result of dechaining during the transition to sta-
tionary phase (hours 7 to 24) (Fig. 4B). On the contrary, the
�acmB mutant had a statistically significant increase in chain
length across all measurements (P 
 0.001) (Fig. 4B, gray bars). At
the start of lag phase (hour 1), the �acmB strain had a pronounced
increase in chain length (mean [M], 30.32 �m; confidence interval
[CI] � 7.78) compared to those for the WT (M, 8.83 �m; CI, 2.77)
and C�acmB (M, 8.34 �m; CI, 1.79) strains, likely due to residual
cells from inoculation transfer of the previous stationary-phase
culture (Fig. 4B). By early-logarithmic phase, the differences in
chain lengths were less evident between the �acmB mutant and
the WT and C�acmB strains. However, by mid-logarithmic phase
(hour 7) the chain lengths in the �acmB culture were considerably
longer (M, 47.0423 �m; CI, 6.17) than those for the WT (M, 13.94
�m; CI, 0.58) and C�acmB (M, 17.85 �m; CI, 1.91) strains (Fig.
4B), suggesting aberrant dechaining and daughter cell separation.
For the remainder of the time course, the �acmB strain main-
tained increased chain lengths while the C�acmB and WT strains
underwent normal cell division, as indicated by a concomitant
decrease in cell chain lengths (Fig. 4B).

Autoaggregationand autolysis of the�acmB mutant. Based
on the abnormal cellular morphology and aberrant dechaining

phenotype of the �acmB mutant, the autoaggregation and auto-
lytic capacity of this strain were evaluated (Fig. 5). The sedimen-
tation rates of the �acmB, WT, and complemented C�acmB
strains were measured over 5 h in PBS (Fig. 5A). For the first 2 h,
the three strains had comparable autoaggregation rates. By 3 h, the
autoaggregation of the �acmB mutant (M, 49.24%; CI, 7.16%)
was significantly higher (P 
 0.001) than those of the WT (M,
28.69%; CI, 2.68%) and C�acmB (M, 33.94%; CI, 3.19%) strains
(Fig. 5A). The differences were most pronounced at 5 h, at which
the �acmB mutant had an autoaggregation percentage of 68.05%
(CI, 7.73%), compared to 45.42% (CI, 10.35%) and 51.61% (CI,
3.31%) for the WT and C�acmB strains, respectively (P 
 0.01)
(Fig. 5A). To assess the autolytic behavior of the �acmB, WT, and
C�acmB strains, Triton X-100-induced autolysis assays were per-
formed (Fig. 5B). The rate of autolysis in the �acmB mutant was
significantly lower than in the WT and complemented strains
(P 
 0.05). Specifically, Triton X-100-induced cells resulted in 40%
autolysis of the �acmB population, compared to 50% in the WT
and 52% in the C�acmB strain (Fig. 5B). These data demonstrate
that the absence of AcmB in the �acmB strain causes an increase in
autoaggregation, along with a decrease in stress-induced autolysis.

Adherence capacity of the�acmB mutant. Extracellular pro-
teins localized to the cell surface are important mediators of pro-
biotic activity, including adhesion to host intestinal epithelial mu-
cus layer and ECM. Because of the irregular morphology of the
�acmB strain, the ability of this mutant to bind mucin and ECM,
including collagen, fibronectin, and laminin, was examined. The
binding capacity of the �acmB mutant was significantly reduced
relative to that of the WT for mucin and all ECM tested (Fig. 6).
Specifically, there was a 50% reduction of cells bound to type
III porcine mucin (P 
 0.002), a 55% reduction of cells bound

FIG 2 acmB orthologs were found in various S-layer-forming strains of Lactobacillus, including L. amylovorus GRL1112, L. helveticus H10, L. kefiranofaciens
ZW3, L. crispatus ST1, L. melliventris, L. amylolyticus DSM 11664, and L. gigeriorum DSM 23908. The genetic region surrounding acmB was highly syntenic in all
species examined. Arrows represent genes, while the colors represent specific genes, as follows: red, acmB; purple, amidase; green, Na	/H	 ion transporter; blue,
oxidoreductase; orange, GMP synthetase; teal, conserved hypothetical protein (HP); pink, gpmA; dark gray, pyrrolidine carboxypeptidase; and yellow, conserved
HP. Genes in white are divergent genes unique to each species where indicated. � indicates a truncated pseudogene.
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to type IV human collagen (P 
 0.001), a 63% reduction of cells
bound to human plasma fibronectin (P 
 0.001), and a 65% re-
duction in adherence to murine laminin (P 
 0.001), relative to
those of the WT. These data suggest that the absence of AcmB has
a pleiotropic effect on the cell surface, which results in decreased
binding to various ECM.

DISCUSSION

The Gram-positive cell wall is composed of a thick peptidoglycan
sacculus responsible for sustaining cell shape, resistance against
environmental and osmotic stresses, and the covalent and nonco-
valent presentation of proteins (26). Extracellular proteins re-
sponsible for the turnover of peptidoglycan during cell division
and daughter cell separation are known as peptidoglycan hydro-
lases (PGH), or autolysins (27). These PGH are divided into four
classes: (i) �-N-acetylmuramidases, (ii) �-N-acetylglucosami-
dases, (iii) N-acetylmuramoyl-L-amidases, and (iv) peptidases
(28).

In this study, the PGH complement of L. acidophilus NCFM
was identified and AcmB, an S-layer-associated �-N-acetylgluco-
saminidase, was functionally characterized. Within the genome of
L. acidophilus NCFM, 11 genes encoding putative PGH were iden-

tified, including four �-N-acetylmuramidases, two �-N-acetylg-
lucosaminidases, one N-acetylmuramoyl-L-amidase, and four
peptidases. Nine of these PGH are predicted to be functional based
on the presence of signal peptide sequences and RNA transcrip-
tion analyses. The redundancy of encoded autolysins is consistent
with the findings of previous studies identifying the PGH comple-
ment in other lactobacilli. L. casei BL23 encodes 13 PGH (43),
while L. plantarum WCFS1 encodes 12 (29) and silage-fermenting
L. buchneri CD034 encodes 24 (44). Notably, the closely related
and S-layer-forming cheese-ripening bacterium L. helveticus DPC
4571 encodes 9 autolysins, including 5 orthologs from the PGH
identified in this study (45). Redundancy of PGH within bacterial
genomes is widespread (27) due to the essentiality of autolysin
activity for cell survival (46). Further, this redundancy may be due
to the fact that many of these hydrolases have more than one
function. PGH of Bacillus subtilis have numerous described func-
tions beyond autolytic hydrolase activity, including roles in pro-
tein turnover and secretion, motility, and competence (47). How-
ever, the characterization of autolysin activity in Lactobacillus
species, to date, has been primarily focused on the hydrolysis of
peptidoglycan sacculi (13).

Autolysins are associated with the cell wall via numerous cell

FIG 3 The gene encoding AcmB was deleted from the chromosome of L. acidophilus NCFM. (A) RNA-seq analysis demonstrates that acmB is polycistronically
expressed with lba0177, which encodes an S-layer-associated N-acetylmuramoyl-L-alanine amidase. (B) Gel electrophoresis of PCR products using the primers
indicated in panel A for the parent strain (WT) compared to the �acmB mutant. The deletion was confirmed by sequencing. L, DNA ladder. (C) SDS-PAGE of
the noncovalently bound extracellular S-layer proteins (SLP) and S-layer-associated proteins (SLAPs) isolated from both the WT and �acmB strains.
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wall binding domains (CWBD) including CHAP domains, GW
domains, SH3 domains, and LysM domains (13, 27). Notably, in
L. acidophilus, the primary CWBD is the S-layer noncovalent at-
tachment domain (NCAD) (pfam03217), which is responsible for

the noncovalent attachment of the S-layer and S-layer-associated
proteins in Lactobacillus (10, 30). Five of the nine functional au-
tolysins in L. acidophilus NCFM have the S-layer NCAD domain,
suggesting extracellular colocalization with the S-layer. In fact,

FIG 4 (A) The cellular morphologies of the wild-type (WT), mutant (�acmB), and acmB complemented (C�acmB) strains were assessed using phase-contrast
light microscopy over a 24-h growth period. (B) Chain length measurements were taken for the WT, �acmB, and C�acmB strains. The chain length for the
�acmB mutant (n � 611 cells) was significantly higher than those for the WT (n � 661 cells) and C�acmB (n � 316 cells) strains across all time points measured
(P 
 0.001). Error bars represent confidence intervals.

FIG 5 (A) Autoaggregation of WT, mutant (�acmB), and complemented (C�acmB) cells. Asterisks indicate statistical significance (P 
 0.001). (B) Triton
X-100-induced autolysis assays for WT, �acmB, and complemented strains. The differences between the �acmB mutant and the WT and complemented strains
are statistically significant (P 
 0.001). Each assay was performed in triplicate; all error bars represent confidence intervals.
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these five proteins were previously identified in the LiCl-purified
SLAP fraction of the L. acidophilus NCFM noncovalently bound
exoproteome (25). Based on the in silico prediction of the PGH
complement identified in this study and the previously identified
SLAPs (25), all encoded �-N-acetylmuramidases, �-N-acetylglu-
cosaminidases, and N-acetylmuramoyl-L-alanine amidases with a
signal peptide sequence in L. acidophilus NCFM appear to be
SLAPs. These findings are supported by previously published
studies on autolysin activity in the S-layer-forming strains L. hel-
veticus ATCC 12046 and L. helveticus ISLC5, in which two autoly-
sins were copurified with the S-layer using LiCl (48, 49). It is also
notable that there are two autolysins described in the PGH com-
plement of L. helveticus DPC 4571 which contain the S-layer
NCAD domain (45).

One of the five S-layer-associated autolysins is AcmB, a pre-
dicted 45-kDa protein with a �-N-acetylglucosaminidase catalytic
domain. Further evidence of the association between this autoly-
sin and the S-layer can be seen through examination of the AcmB
orthologs in Lactobacillus species. All known AcmB orthologs are
found exclusively in S-layer-forming species of the L. acidophilus
homology group. Notably, AcmB orthologs are not found in the
closely related, but non-S-layer-forming members of the homol-
ogy group, including Lactobacillus gasseri, Lactobacillus johnsonii,
and the progenitor, Lactobacillus delbrueckii subsp. bulgaricus.
These data are supported by our recent exoproteomic survey of
S-layer- and non-S-layer-forming species of the L. acidophilus ho-
mology group (10). Autolysins, including AcmB, were found in
the noncovalently bound SLAP fractions of the S-layer-forming L.
crispatus ST1, L. amylovorus GRL1112, and L. helveticus CNRZ32,
but were not found in the non-S-layer-forming species tested (10).

There are two predicted �-N-acetylglucosaminidases in L. ac-
idophilus NCFM, AcmA and AcmB. Because AcmA does not have
a signal peptide sequence and has lower transcriptional expression
than the other autolysins, AcmB appears to be the principal �-N-
acetylglucosaminidase for L. acidophilus NCFM. To elucidate the
role of AcmB in cell wall physiology and autolytic function, a
�acmB isogenic mutant was created and complemented with an
AcmB expression vector. Results indicate that the �acmB strain

presents an altered cellular morphology consisting of increased
chain lengths and autoaggregation due to its altered dechaining
phenotype, as well as decreased stress-induced autolysis. The phe-
notypes of the L. acidophilus NCFM �acmB strain are consistent
with the characterization of a �-N-acetylglucosaminidase, Acm2,
in L. plantarum WCFS1 which similarly presented an altered de-
chaining and autolysis phenotype (29). Collectively, these data
suggest that AcmB is a functioning autolysin involved in pepti-
doglycan turnover and daughter cell separation during cell divi-
sion. Further work is necessary to characterize the specific hydro-
lytic activity of AcmB in L. acidophilus NCFM.

The �acmB deletion appeared to have a pleiotropic effect on
the cell wall and subsequent presentation of cell surface proteins.
The AcmB mutant presented a diminished capacity for binding to
mucin and the extracellular matrices (ECM) collagen, fibronectin,
and laminin in vitro. The mechanism for this adhesion phenotype
remains unclear. It is possible that AcmB may directly interact
with ECM in addition to its autocatalytic activity, not unlike the
moonlighting proteins enolase, GAPDH, and GroEL, which have
demonstrated secondary functions in adhesion to ECM in various
Lactobacillus species (50–52). It is also possible that the impaired
peptidoglycan hydrolysis in the �acmB mutant results in a con-
comitant impairment of the presentation of extracellular proteins
which are covalently or noncovalently bound to the peptidogly-
can. It seems most likely, however, that the reduced adhesion phe-
notype is due to the increased autoaggregation that resulted from
the aberrant dechaining phenotype of the �acmB strain. Relevant
cell surface proteins, including aggregation-promoting factors
(42), fibronectin-binding proteins (21, 53), and other adhesins
(54–56), may not be as exposed for contact with ECM. This inter-
pretation of the data is consistent with previous observations of an
acmA-deficient mutant of Lactococcus lactis MG1363, in which
aberrant dechaining resulted in reduced adhesion to glass, poly-
styrene, and stainless steel (57).

In conclusion, we have shown that the SLAP AcmB is an auto-
lysin involved in cell division and daughter cell separation in L.
acidophilus NCFM. AcmB has an effect, directly or indirectly, on
the adhesion of L. acidophilus NCFM to mucin and ECM, an im-
portant attribute for probiotic bacteria. Orthologs of AcmB are
found exclusively in S-layer-forming species of the L. acidophilus
homology group. Further, many of these autolysins, including
AcmB, have been identified as SLAPs in the noncovalent exopro-
teomes of the S-layer-forming species of the said homology group.
There is a dearth of information regarding the evolutionary func-
tion of S-layers in bacteria, especially those in Lactobacillus. Here,
we propose that the S-layer may function as a scaffold for multiple
proteins, including autolysins. Understanding the biological roles
of these autolysins offers important evolutionary insights regard-
ing the essentiality of the S-layer, as well as physiological insights
regarding cell division and peptidoglycan hydrolysis in Lactobacil-
lus species that produce S-layers.
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