










P � 0.001). Fish diet microbiota seemed to have the strongest effect on the gut
microbiota, leading to a higher abundance of Proteobacteria taxa in the posterior tract
of the midgut, while Firmicutes taxa prevailed in the anterior and middle tract (Fig. 4A).
In contrast, the midgut of BSF larvae fed with standard and veg mix diets were more
similar and characterized by higher levels of Bacteroidetes (Fig. 4). Indeed, the midgut
of larvae fed with the fish diet showed significantly higher weighted UniFrac distances
from the standard and veg mix diets, compared to the distance between standard and
veg mix, in all three portions (Fig. S1). Although the larvae feed and develop inside the

FIG 4 Incidence of the major bacterial taxonomic groups. The stacked bar chart shows the relative abundances of bacterial phyla (A) and genera (B) identified
in the midgut and diet samples analyzed. The order of the taxa in each bar is the same provided in the legend. Values are the average of 5 replicates. Genera
and phyla with an abundance of �2% in at least 5 samples are summed up and shown as “others.”
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diet, the data show that BSF larvae do not significantly alter the microbiota composition
of the substrate, except for an increase in Lactobacillus population in the veg mix diet
(Fig. 4B). A complete list of the taxa identified is reported in Tables S1 to S4.

DISCUSSION

Despite the great and exponentially increasing interest in BSF larvae for bioconver-
sion (4–6) and bioremediation (32), several aspects concerning the biology of this insect
are still neglected. Surprisingly, there is still a paucity of information on its intestinal

FIG 5 Heat plot based on microbiota composition at genus level. Hierarchical Ward’s linkage clustering based on the Spearman’s correlation coefficient of the
microbial taxa abundance. Column bar is color coded according to the type of diet and the midgut region. Row bar is colored according to the taxa assignment
at phylum level. The color scale represents the scaled abundance of each variable, denoted as Z-score, with red indicating high abundance and blue indicating
low abundance.
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microbiota (11), an issue that should be instead considered a priority for an organism
that can be used for such purposes. A recent review on the microbial community
associated with BSF (11) highlights knowledge gaps and provides suggestions on
aspects that still need to be unraveled rather than presenting a summary of the
available data.

First, none of the few studies on the BSF intestinal microbiota have taken into
account the correlation between the different regions of the midgut of this insect and
the microbiota. In this paper, we provide evidence that discrete regions can be
recognized along the midgut of BSF larvae, as clearly demonstrated by the differences
in the luminal pH (Fig. 1). The anterior region is characterized by an acid luminal
content, followed by a strongly acidic middle region and an alkaline posterior tract.
These data are partially in accordance with previous reports on nonhematophagous
brachycerous Diptera. Indeed, in the larvae of Musca domestica (Diptera: Muscidae),
three main segments can be identified. The anterior and the posterior midgut are
characterized by a slightly acidic luminal pH, while the middle midgut presents a
very low pH in the lumen (21), which is generated by the so called “copper cells,” a
distinctive cell type present in the acidic segment of the midgut of flies (23, 33–35). The
midgut of D. melanogaster larvae presents distinct regions as well (23, 35), with different
pH of the luminal content. The anterior segment and the anterior part of the posterior
segment is between neutral to mildly alkaline, while the middle segment is highly
acidic, and the posterior part of the posterior segment is highly alkaline (23). The
differences of the pH in fly midgut regions are associated with peculiar physiological,
immune, and microbiological features (22, 26–28, 30).

Here, we have demonstrated that in BSF larvae, the presence of different midgut
regions associates with differences in microbial density and composition. We have
observed that each tract is characterized by a different bacterial load, which is higher
in the posterior compared to the anterior midgut. Interestingly, microbial diversity has
an opposite trend, since it gradually decreases along the midgut, suggesting that a
selection of fewer taxa takes place. A simple explanation may be a reduced flow rate
of luminal content to the posterior region due to the possible presence of sphincters
or epithelium folding. Alternatively, or in addition, most bacteria are killed in the
anterior and middle region, and only a selection of the initial microbiota proliferates in
the posterior midgut using the available nutrients, thus leading to higher numbers. This
process of selection may result by the balanced combination of extreme pH values in
the middle region of the midgut and the activity of antimicrobial peptides, lysozymes,
and digestive enzymes produced and secreted by midgut cells into the lumen of the
anterior and middle midgut (17, 21, 27, 36, 37).

To understand whether and how food affects the microbial communities that
colonize the digestive tract of BSF larvae, we have examined dietary substrates that
strongly differ in terms of nutrient composition. In particular, each of the three diets
was characterized by a different protein/carbohydrate ratio, a parameter that has been
demonstrated to impact on the gut microbiota (38–40) and insect performances
(41–43). Indeed, we have detected differences in BSF larval development on the
different diets. A major novelty introduced by our study is the characterization of the
microbiota of the dietary substrates, an aspect that was previously overlooked (11) and
that could strongly affect the composition of the bacterial community of the midgut.
In addition, we have studied the influence of feeding activity of BSF larvae on dietary
substrates. A comparative analysis of the results shows that diet composition plays a
major role in shaping the diversity of the midgut microbiota. Similarly, the microbiota
present in the diet influences the composition of the microbiota resident in the
anterior/middle tracts of the midgut and less strongly influences the one occurring in
the posterior, which presents a very narrow selection of the species in the food
substrate. Interestingly, BSF larvae do not have detrimental effects on the microbiota of
the substrates on which they feed and develop. They are not able to significantly
change the bacterial community of the standard and fish diet substrates, and, although
an increase of a specific population (i.e., Lactobacillus) occurs in veg mix substrate, these
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bacteria are known as nonpathogenic for their potential probiotic properties for
humans (44–46), and some species are involved in detoxification of pesticides and
xenobiotics in humans and insects (47–50). This evidence is in contrast with previous
claims about the capacity of BSF larvae to change the microbiota of substrates and, in
particular, to reduce pathogenic bacteria of substrates (1, 11), but it is a valuable trait
for an organism that has to be mass-reared for bioconversion and bioremediation on
a variety of substrates.

The differences found in the microbiota of larvae fed on different diets could reflect
their physiological performances and bioconversion efficiency, and the posterior
midgut, where the resident microbiota results from a selection of microbes present in
previous midgut tracts, may have a relevant contribution in nutrient conversion and
thus in energy harvest and overall fitness. Standard and veg mix diets are associated
with an overall similar microbiota composition, both leading to increased levels of
Bacteroidetes taxa in the midgut, bacteria known as glycan degraders because of the
presence of polysaccharide utilization loci in their genome (51). Members of the genera
Sphingobacterium and Dysgonomonas are particularly abundant, likely reflecting a
remarkable potential for complex polysaccharide degradation, and are worthy to be
isolated and explored for biotechnological purposes. Bacteroidetes taxa have been
identified as core members of the gut microbiome in many Drosophila species across
the globe and also in those of other insects, including termites and honeybees (52), and
several have xylanases directly involved in hemicellulose digestion (53, 54). On the
other hand, the fish diet apparently induces a more putrefactive environment, with a
microbiota severely dominated by Proteobacteria (Fig. 4A), mainly Providencia species
(Fig. 4B), which are highly transmitted vertically throughout the insect life cycle (11) but
which can also be pathogens of many organisms, including humans and insects (55).
On the basis of the above consideration, the fish diet may induce a gut dysbiosis, which
may contribute to the reduced performance that we detected for BSF larvae reared on
fish diet compared to those reared on the other two feeding substrates. These data,
along with a previous study performed on the same insect (7), suggest that unbalanced
diets with a high protein/carbohydrate ratio content are not optimal for BSF larvae
rearing.

Despite the great potential of H. illucens larvae (see the introduction for details),
information on its microbiota is surprisingly very limited. Apart from a recent study on
mycobiota (56), only two studies have previously examined the microbiota of H. illucens
larvae. In the first study (19) (Table 2) the microbiota of the entire guts from larvae
reared on three different feeding substrates were investigated. In the second one (20)
(Table 2) the microbiota analysis was performed on whole larvae. The differences in the
experimental samples analyzed make it difficult to compare the results from those
studies and, for the same reason, results from previous studies and the present study.
Moreover, both studies completely overlooked the bacterial communities present in
the feeding substrates, which we demonstrated can affect midgut microbiota compo-
sition. Nevertheless, as summarized in Table 2, a limited comparison can be done. In
Zheng et al. (20), larvae were reared on a diet with a composition very similar to the
standard diet used in this study, and the major phyla that characterize the microbiota
match (both considering each midgut tract separately or the average value of the
different tracts). This evidence, along with the differences associated with the micro-
biota of larvae reared on different substrates, suggests that diet composition had a role
in shaping bacterial communities. In particular, when diets were very unbalanced
(i.e., cooked rice and fish diet), the diversity of microbial communities decreased
compared to those in nutritionally more balanced diets. In those unbalanced diets,
Proteobacteria was the major group identified, whereas in all other cases, Bacteroidetes
was one of the dominant phyla (Table 2). Interestingly, our data (Table 2) demonstrate
that the overall gut microbiota does not mirror the microbiota composition of each
tract, confirming the relevance of working with each tract separately.

Our study focused on the effect of midgut morphofunctional regionalization in
shaping the residing microbiota. Future work on microbiota in the hindgut of H. illucens
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larvae is also needed, although the establishment of a stable bacterial community in
the hindgut of insect larvae is problematic (due to the molts during the larval period
that involve the removal of the cuticle lining the hindgut epithelium) and often requires
the presence of special structures that provides a stable environment for bacterial
colonization (57), structures that have never been reported for H. illucens larvae.

In conclusion, the presence of different midgut domains, diet composition, and diet
microbiota have a nonnegligible effect on BSF larval microbial ecology. These factors
and their interdependence will play a major role for a proper exploitation of the
biotechnological uses of this insect.

MATERIALS AND METHODS
Insect rearing. BSF eggs were collected from a colony established in 2015 at the University of

Insubria (Varese, Italy) and were maintained in a humid chamber at 27°C until hatching. The eggs were
laid on a petri dish (9 � 1.5 cm) with the experimental diet. Three diets were used in the current study:
standard diet for Diptera (standard), a diet containing fruits and vegetables (veg mix), and a diet based
on fish feed (fish). Standard diet (31) was composed of wheat bran (50%), corn meal (30%), and alfalfa
meal (20%) mixed in a 1:1 ratio of dry matter/water (approximately 13% protein; protein/carbohydrate
ratio, 1:1). Veg mix diet was composed by seven fruits and vegetables (apple, banana, pear, broccoli,
zucchini, potato, and carrot) in equal quantity, appropriately minced (approximately 1% protein; protein/
carbohydrate ratio, 1:9). Fish diet was composed of fish meal (FF type; Mazzoleni SpA, Bergamo, Italy),
mixed in a 1:1 ratio of dry matter/water (approximately 35% protein, no carbohydrates). Percentages
were calculated on diet weight, including water. The values in parenthesis concerning protein and
carbohydrate content were estimated based on data available on the web for standard and veg mix
diet, whereas for the fish diet, they were reported in the product data sheet. Nipagin (methyl
4-hydroxybenzoate) was added to the diet administered to larvae for the first 4 days after hatching to
avoid mold growth (an 18% [wt/vol] stock solution in absolute ethanol was prepared; 20 �l of this stock
solution was added to each gram of veg mix diet, whereas 1 ml of a 1.7% [vol/vol] dilution in water of
the stock solution was added to each gram of standard and fish diet). Four days after hatching, 300 larvae
were placed in a plastic container (16 � 16 � 9 cm), and fed ad libitum with the three experimental diets
described above, without nipagin. The larvae were maintained at 27.0 � 0.5°C, 70% � 5% relative
humidity, in the dark. Fresh diet was added every 2 days, until larvae reached the last larval instar. Five
independent rearing groups were set up for each diet. Random samples of 30 individuals were weighed

TABLE 2 Short summary of the data on microbiota composition of H. illucens larvae from present work and published studiesa

Authors and yr (reference) or source Sample Feeding substrate Major phyla %b

Jeon et al., 2011 (19) Larval gut Food waste Bacteroidetes 67.4
Proteobacteria 18.9
Firmicutes 9.4
Fusobacteria 2.0
Actinobacteria 1.9

Cooked rice Proteobacteria 54.0
Firmicutes 47.3
Unclassified 3.5

Calf forage Proteobacteria 31.1
Actinobacteria 24.6
Firmicutes 23.5
Bacteroidetes 20.5

Zheng et al., 2013 (20) Whole larvae Gainesville dietc Bacteroidetes 54.4
Firmicutes 20.0
Proteobacteria 16.0
Actinobacteria 9.0

Present study Larval midgut Standard diet Bacteroidetes 41.5 (A: 65.9, M: 54.4, P: 41.1)
Proteobacteria 28.2 (A: 25.9, M: 33.7, P: 25.2)
Firmicutes 13.6 (A: 4.7, M: 5.6, P: 30.4)
Actinobacteria 3.9 (A: 3.2, M: 5.3, P: 3.1)

Veg mix Bacteroidetes 65.4 (A: 85.2, M: 61.2, P: 49.8)
Proteobacteria 19.1 (A: 12.2, M: 28.9, P: 16.2)
Firmicutes 15.7 (A: 2.0, M: 28.9, P: 16.2)
Actinobacteria 11.6 (A: 0.1, M: 3.8, P: 30.8)

Fish diet Proteobacteria 55.5 (A: 37.1, M: 30.8, P: 98.6)
Firmicutes 43.0 (A: 59.1, M: 68.6, P: 1.4)

aIn all of the studies the microbiota composition was obtained by 16S rRNA gene sequencing. Estimated on the basis of the histogram presented in references
19 and 20.

bOnly percentages of �1% are reported. For the present study, the % reported is the average of the percentages in the three different midgut portions (A, anterior;
M, middle; P, posterior) that are specified in parenthesis.

cGainesville diet is composed of 20% corn meal, 30% alfalfa meal, and 50% wheat bran, saturated with water.
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every 2 days. For each experimental diet, the sampling and the annotation of the larval weight were
made in triplicate. Before weighing, the larvae were washed in tap water to remove diet matter from their
body and then wipe dried. The weights were recorded until 25% of insects reached the pupal stage.
Last-instar, actively feeding larvae were used for the measurement of midgut lumen pH and microbiota
analyses.

Determination of pH in the midgut lumen with colorimetric indicators. The presence of different
pH in the midgut lumen of H. illucens larvae was assessed using phenol red and bromophenol blue, two
pH indicators that assume different colorations at different pH values. Bromophenol blue is yellow at pH
values lower than or equal to 3.0 and blue at pH higher than or equal to 4.6; phenol red is yellow at a
pH lower than or equal to 6.8 and fuchsia at pH higher than or equal to 8.2, with a gradual color transition
for intermediate values. H. illucens larvae were fed ad libitum with standard diet until they reached the
last instar, as described above. Larvae with a weight ranging between 180 and 200 mg were selected and
transferred to plastic containers on standard diet with added 0.2% (wt/wt) bromophenol blue or phenol
red. After 24 h, the larvae were removed from the diet, placed in a plastic tube, and anesthetized on ice
with CO2. The guts were isolated, and the coloration of the midgut content was evaluated by means of
a stereomicroscope.

Collection of midgut and diet samples and RNA extraction. Last-instar larvae were washed with
70% ethanol in autoclaved distilled water and then dissected with the help of a stereomicroscope, under
a horizontal-flow hood, using sterile tweezers and scissors to avoid cross-contaminations of the samples.
Each midgut was isolated in autoclaved 1� phosphate-buffered saline (137 mM NaCl, 2.7 mM KCl,
4.3 mM Na2HPO4, and 1.4 mM KH2PO4; pH 7.4) in a sterile petri dish (5.5 � 1.3 cm). Once collected, the
midgut was divided into three districts, the anterior, middle, and posterior regions (see Results and Fig.
1). For the dissection of each larva, a new petri dish was used, and tweezers and scissors were washed
with 70% ethanol in water. For each diet, pools of five midgut regions samples for each of the five
replicates of insect rearing were collected in a cryovial, immediately put into TRIzol reagent (Life
Technologies, Carlsbad, CA), and kept at �80°C until total RNA extraction, which was performed
according to the manufacturer’s instructions. Briefly, after homogenization with Eppendorf fitting pestles
to lyse samples in TRIzol reagent, total RNA was precipitated with isopropanol, washed with ethanol, and
suspended in RNase-free water. Samples of fresh (before administration to larvae) and conditioned diets
(on which larvae have fed) were also immediately put into TRIzol reagent and kept at �80°C until total
RNA extraction. Ten samples of both fresh and conditioned diets were collected for each of the 5
experimental replicates on the 3 different feeding substrates.

RNA concentration was assessed by measuring the absorbance at 280 nm with a Varioskan Flash
Multimode Reader (Thermo Scientific, Waltham, MA), and sample purity was evaluated by assessing the
260/280-nm absorbance ratio. Total RNA preparations were then treated with Turbo DNase I (Life
Technologies) according to the manufacturer’s instructions, and RNA quality was checked by electro-
phoresis on 1% agarose gel.

qRT-PCR for relative bacterial load determination. Total RNA was isolated as described above. The
relative bacterial load in the three midgut regions (n � 5 for each sampling point containing pools of 5
midgut portions each) was quantified by normalization of the relative expression of the 16S rRNA gene
(16S rRNA forward primer, ACTCCTACGGGAGGCAGC; 16S rRNA reverse primer, ATTACCGCGGCTGCT
GGC) to that of the ribosomal protein L5 gene of H. illucens (HiRPL5). The primers used for HiRPL5 (HiRPL5
forward primer, AGTCAGTCTTTCCCTCACGA; HiRPL5 reverse primer, GCGTCAACTCGGATGCTA) were de-
signed on conserved regions of RPL5 in other insect species and their sequences checked by sequencing
the PCR product. Changes in relative bacterial loads were measured by one-step qRT-PCR (58–60), using
the SYBR green PCR kit (Applied Biosystems, Carlsbad, CA), according to the manufacturer’s instructions,
using the primers reported above. Relative gene expression data were analyzed using the 2�ΔΔCT

method (61–63). Expression data were normalized, taking into account the differences in the areas of the
cross-section of the different intestinal tracts (81,000 � 7,300 �m2, 250,000 � 17,200 �m2, and
46,000 � 1,700 �m2 for the anterior, middle, and posterior midgut, respectively; n � 10 for each tract)
by dividing the threshold cycle (CT) values (for both 16S rRNA and HiRPL5 transcripts) by the area of the
cross-section of the corresponding midgut tract. The areas were calculated using the diameter of the
lumen of each midgut tract, obtained by direct measurement on the micrographs of different cross-
sections acquired from semithin cross-sections of BSF larval midguts stained with crystal violet and basic
fuchsin, prepared for light microscopy analysis (64). For validation of the ΔΔCT method the difference,
between the CT value of 16S rRNA and the CT value of HiRPL5 transcripts [ΔCT � CT(16S rRNA) � CT(HiRPL5)]
was plotted versus the log of 2-fold serial dilutions (200, 100, 50, 25, and 12.5 ng) of the purified RNA
samples. The plot of log total RNA input versus ΔCT displayed a slope lower than 0.1
(y � 1.3895 � 0.0137x, R2 � 0.0566), indicating that the efficiencies of the two amplicons were approx-
imately equal.

Analysis of the microbiota and bioinformatics of the 16S rRNA gene sequencing data. After
extraction, 400 ng of RNA were reverse-transcribed into cDNA with random primers using RETROscript
(Life Technologies), according to the manufacturer’s instructions. The midgut microbiota was assessed by
sequencing of the amplified V3 to V4 region of the 16S rRNA gene as recently described (65).
Demultiplexed forward and reverse reads were joined by using FLASH (66). Joined reads were quality
trimmed (Phred score � 20), and short reads (�250 bp) were discarded by using Prinseq (67). High-
quality reads were then imported in QIIME1 (68). Operational taxonomic units (OTU) were picked through
a de novo approach, and UCLUST method and taxonomic assignment were obtained by using the RDP
Classifier and the Greengenes database (69), following a previously reported pipeline (65). To avoid
biases due to different sequencing depth, OTU tables were rarefied to the lowest number of sequences
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per sample. Statistical analyses and visualization were carried out in the R environment (https://www.r-
project.org). Alpha diversity analysis was carried out in QIIME on rarefied OTU tables. Kruskal-Wallis and
pairwise Wilcoxon tests were used to determine significant differences in alpha diversity parameters,
weighted UniFrac distance, or OTU abundance. Permutational multivariate analysis of variance (non-
parametric MANOVA) based on a Bray-Curtis distance matrix was carried out to detect significant
differences in the overall microbial community composition among the different parts of the midgut or
as affected by the type of diet, by using the adonis function in the R vegan package.

Statistical analysis. Data were analyzed using Prism version 6.0b (GraphPad Software Inc., San
Diego, CA, USA) software using one-way ANOVA with Tukey’s multiple-comparison test to compare
bacterial load and parameters of larval performances within any single diet treatment. Two-way ANOVA
analysis followed by Bonferroni’s post hoc tests, when significant effects were observed (P value � 0.05),
was carried out on bacterial load as affected by different diet treatments and different midgut traits.
When necessary to meet assumptions of normality, transformation of data was carried out. Levene’s test
was carried out to test the homogeneity of variance.

Accession number(s). The 16S rRNA gene sequences produced in this study are available at the
Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI), under the
accession number SRP149894.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AEM
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