iron homeostasis
- Genetics and Molecular BiologyFerric Uptake Regulator Fur Coordinates Siderophore Production and Defense against Iron Toxicity and Oxidative Stress and Contributes to Virulence in Chromobacterium violaceum
Maintenance of iron homeostasis, i.e., avoiding both deficiency and toxicity of this metal, is vital to bacteria and their hosts. Iron sequestration by host proteins is a crucial strategy to combat bacterial infections. In bacteria, the ferric uptake regulator Fur coordinates the expression of several iron-related genes. Sometimes, Fur can also regulate several other processes. In this work, we performed an in-depth phenotypic...
- Environmental MicrobiologyIron Homeostasis in Bacillus subtilis Requires Siderophore Production and Biofilm Formation
Iron acquisition is of fundamental importance for microorganisms, since this metal is generally poorly bioavailable under natural conditions. In the environment, most bacteria are found tightly packed within multicellular communities named biofilms. Here, using the soil Gram-positive bacterium Bacillus subtilis, we show that biofilm formation and the production of...
- Genetics and Molecular BiologyIdeR, a DtxR Family Iron Response Regulator, Controls Iron Homeostasis, Morphological Differentiation, Secondary Metabolism, and the Oxidative Stress Response in Streptomyces avermitilis
Iron is essential to almost all organisms, but in the presence of oxygen, iron is both poorly available and potentially toxic. Streptomyces species are predominantly present in soil where the environment is complex and fluctuating. So far, the mechanism of iron homeostasis in Streptomyces spp....