nitrogen fixation
- Minireview | SpotlightThe Symbiotic “All-Rounders”: Partnerships between Marine Animals and Chemosynthetic Nitrogen-Fixing Bacteria
Nitrogen fixation is a widespread metabolic trait in certain types of microorganisms called diazotrophs. Bioavailable nitrogen is limited in various habitats on land and in the sea and, accordingly, a range of plant, animal, and single-celled eukaryotes have evolved symbioses with diverse diazotrophic bacteria, with enormous economic and ecological benefits.
- Environmental Microbiology | SpotlightEvolution of Diverse Effective N2-Fixing Microsymbionts of Cicer arietinum following Horizontal Transfer of the Mesorhizobium ciceri CC1192 Symbiosis Integrative and Conjugative Element
Symbiotic N2 fixation is a key component of sustainable agriculture, and in many parts of the world legumes are inoculated with highly efficient strains of rhizobia to maximize fixed N2 inputs into farming systems. Symbiosis genes for Mesorhizobium spp. are often carried chromosomally within mobile gene clusters called ICEs.
- Environmental Microbiology | SpotlightBioelectrochemical Fixation of Nitrogen to Extracellular Ammonium by Pseudomonas stutzeri
Ammonia greatly affects global ecology, agriculture, and the food industry. Diazotrophs with an enhanced capacity of extracellular NH4+ excretion have been proven to be more beneficial to the growth of microalgae and plants, whereas most previously reported diazotrophs produce intracellular organic nitrogen in the absence of chemical suppression and genetic manipulation.
- Food MicrobiologyNitrogen Fixation in Pozol, a Traditional Fermented Beverage
Nitrogen-fixing bacteria are found in different niches, as symbionts in plants, in the intestinal microbiome of several insects, and as free-living microorganisms. Their use in agriculture for plant growth promotion via biological nitrogen fixation has been extensively reported. This work demonstrates the ecological and functional importance that these bacteria can have in food fermentations, reevaluating the presence of these genera as...
- Environmental MicrobiologyDiazotrophic Anaeromyxobacter Isolates from Soils
Anaeromyxobacter is globally distributed in soil environments, especially predominant in paddy soils. Current studies based on environmental DNA/RNA analyses frequently detect gene fragments encoding nitrogenase of Anaeromyxobacter from various soil environments. Although the importance of Anaeromyxobacter as a diazotroph in nature has been suggested by culture-independent studies, there has been no solid...
- Microbial EcologyUnexpected Abundance and Diversity of Phototrophs in Mats from Morphologically Variable Microbialites in Great Salt Lake, Utah
The earliest evidence of life on Earth is from organosedimentary structures, termed microbialites, preserved in 3.481-billion-year-old (Ga) rocks. Phototrophic microbial mats form in association with an ∼700-km2 expanse of morphologically diverse microbialites in the hypersaline Great Salt Lake (GSL), Utah. Here, we show taxonomically similar microbial mat communities are associated with morphologically diverse microbialites...
- Plant MicrobiologyAn Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by Bradyrhizobium diazoefficiens (syn. Bradyrhizobium japonicum) USDA110T
Rhizobia form symbiotic associations with legumes that lead to the formation of nitrogen-fixing nodules. Sulfur-containing molecules play a crucial role in nitrogen fixation; thus, the rhizobia inside nodules require large amounts of sulfur. Rhizobia can assimilate both inorganic (sulfate) and organic (sulfonates) sources of sulfur. However, very little is known about rhizobial sulfur metabolism during symbiosis. In this report, we show...
- Plant Microbiology | SpotlightStable Transformation of the Actinobacteria Frankia spp.
The absence of genetic tools for Frankia research has been a major hindrance to the associated field of actinorhizal symbiosis and the use of the nitrogen-fixing actinobacteria. This study reports on the introduction of plasmids into Frankia spp. and their functional expression of green fluorescent protein and a cloned gene. As the first step in developing genetic tools, this technique opens up the field to a wide...
- Environmental MicrobiologyNfiR, a New Regulatory Noncoding RNA (ncRNA), Is Required in Concert with the NfiS ncRNA for Optimal Expression of Nitrogenase Genes in Pseudomonas stutzeri A1501
Biological nitrogen fixation is an energy-expensive process requiring the hydrolysis of 16 ATPs. Consequently, the expression of nif genes is highly regulated at both transcriptional and posttranscriptional levels through complex regulatory networks. Global regulation involves a number of regulatory proteins, such as the nif-specific activator NifA and the global nitrogen regulator NtrC, as well as various regulatory...
- Genetics and Molecular BiologyEnhanced Nitrogen Fixation in a glgX-Deficient Strain of Cyanothece sp. Strain ATCC 51142, a Unicellular Nitrogen-Fixing Cyanobacterium
Cyanobacteria are oxygenic photosynthetic bacteria that are found in a wide variety of ecological environments, where they are important contributors to global carbon and nitrogen cycles. Genetic manipulation systems have been developed in a number of cyanobacterial strains, allowing both the interruption of endogenous genes and the introduction of new genes and entire pathways. However, unicellular diazotrophic cyanobacteria have been...